
Selective and Compressive Sensing for
Energy-Efficient Implantable Neural Decoding

Aosen Wang1, Chen Song1, Xiaowei Xu1, Feng Lin1, Zhanpeng Jin2 and Wenyao Xu1
1CSE Dept., SUNY at Buffalo, NY, USA

2 ECE Dept., SUNY at Binghamton, NY, USA
{aosenwan, csong5, xiaoweix, flin28, wenyaoxu}@buffalo.edu, zjin@binghamton.edu

Abstract—The spike classification is a critical step in im-
plantable neural decoding. The energy efficiency issue in the
sensor node is a big challenge in the entire system. Compressive
sensing (CS) provides a potential way to tackle this problem.
However, the overhead of signal reconstruction constrains the
compression in sensor node and analysis in remote server. In
this paper, we design a new selective CS architecture for wireless
implantable neural decoding. We implement all the signal analysis
on the compressed domain. To achieve better energy efficiency, we
propose a two-stage classification procedure, including a coarse-
grained screening module with softmax regression and a fine-
grained analysis module based on deep learning. The screening
module completes the low-effort classification task in the front-
end and transmits the compressed data of high-effort task to
remote server for fine-grained analysis. Experimental results
indicate that our selective CS architecture can gain more than
50% energy savings, yet keeping the high accuracy as state-of-
the-art CS architectures.

I. INTRODUCTION

Neural decoding is one of the most significant procedure
to investigate the neural activity mechanisms [1]. The spike
classification is an effective method to help understanding the
neural encoding and decoding. The typical systems for spike
classification comprise Electroencephalography (EEG) signal
acquisition sensor and remote processing center. Huge amount
of data exchange in wireless communication makes the sensor
design face with severe energy efficiency issues. Compressive
sensing (CS) is a promising way to relieve the energy issue
in the sensor node. It samples the signal information directly,
breaking the conventional Shannon-Nyquist rule on the data
sampling. In practice, the CS-based sampling rate is much low-
er and can reduce a significant portion of energy consumption
on processing and wireless communication.

There are some prior work on spike classification and CS.
Zhang et al. proposed a compact microsystem to apply CS
into implantable neural recording [2]. Suo et al. optimized
the neural recording system by a two-stage sensing and s-
parsifying dictionary [3]. Vogelstein et al. demonstrated the
good performance of applying supporting vector machine to
spike classification [4]. These work split the signal recording
and classification into two independent procedures, and only
concentrate on the single-facet optimization. It will be more
effective to consider compressed domain data analysis, i.e.,
combining the biosignal recording and classification together.

In this paper, we propose a selective CS architecture to
combine the signal acquisition and analysis into the front-end
sensing architecture to further reduce the wireless transmission

burden. We design a coarse-grained screening module to
evaluate the classification effort in the front-end. It can process
the low-effort task and transmit the high-effort task back to the
server. We also deploy the deep learning algorithm to execute
the fine-grained analysis. By seamlessly cooperating the two
proposed modules, the selective CS architecture can provide
more than 50% energy savings for wireless implantable neural
decoding.

The remainder of this paper is organized as follows:
Section II introduces the background of the Quantized CS
theory. Our proposed selective CS architecture is discussed
in Section III, and Section IV presents the related experiments
and evaluations. The paper is concluded in Section V.

II. PRELIMINARY OF COMPRESSIVE SENSING

The compressive sensing theory is a new emerging analog-
to-information sampling scheme. We assume that the x is
an N -dimension vector and sampled using M -measurement
vector y:

y = Φx, (1)

where Φ ∈ RM×N is the sensing array and M is defined as the
sampling rate. The elements in Φ are random variables. Be-
cause of M << N , the formulation in Eq. (1) is undetermined.
However, under certain sparsity-inducing basis Ψ ∈ RN×N ,
the signal x can be represented by a set of sparse coefficients
u ∈ RN :

x = Ψu. (2)

Therefore, based on Eq. (1) and (2), the sparse vector, u, can
be represented as follows:

y = ΦΨu = ΘM×Nu, (3)

where ΘM×N = ΦΨ is an M×N matrix, called the measuring
matrix. In practical applications, original signals need to be
quantized for transmitting. Then the compressed signal, y, is
processed by a quantization model formulated as follows:

ŷ = Qb(y), (4)

where Qb(.) is the quantization function [5], [6] , and ŷ is the
quantized representation of y with b bits. Due to the prior
knowledge that the unknown vector u is sparse, u can be
estimated by ℓ1 minimization to approximate the optimal ℓ0
minimization formulation as follows:

û = min ∥u∥1 s.t. ∥ŷ −Θu∥ < ϵ, (5)

where ϵ is the reconstruction error margin. The ℓ1 minimization
is convex and can be solved within the polynomial time.
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Fig. 1. The block diagram of the selective CS architecture for wireless implantable neural decoding.

Therefore, the reconstructed signal, x̂, is retrieved by:

x̂ = Ψû. (6)

III. SELECTIVE CS ARCHITECTURE

In this section, we present our proposed selective CS
architecture for neural decoding. We design a coarse-grained
screening module to judge the effort of signal identification in
the front-end. Correspondingly, we use a robust deep learning
algorithm as the fine-grained analysis procedure to process the
high-effort task in the server-end.

A. Architecture Overview

The selective CS architecture for wireless implantable
neural decoding is illustrated in Fig. 1. The entire architecture
includes a low-power CS front-end and a remote server. Our
ultimate goal is to optimize the energy efficiency in the front-
end.

The front-end design comprises three key components,
a random encoding module, a quantization module and a
coarse-grained screening module. As shown in Fig. 1, analog
N -dimension raw sensor signal x is compressed into M -
dimension measurements y in the random encoding mod-
ule. The random encoding module consists of M branches
with each completing a randomized combination for one
measurement. Every branch includes a multiplier, a column
vector in sensing array Φ and an integrator to accumulate the
intermediate results. In the quantization module, there are b
comparators and a digital encoder. Each comparator outputs
a binary decision of comparing the input analog signal and a
reference voltage level. The digital encoder organizes the final
quantization result ŷ based on these comparison decisions. The
newly proposed coarse-grained screening module analyzes the
compressed measurements ŷ. It outputs the category prediction
and a confidence score. If the score is larger than the pre-
defined threshold, the wireless transmitter sends the final
prediction to the remote server. Otherwise, it streams the
compressed measurements ŷ to the server for fine-grained
analysis by deep learning algorithm.

Note that the coarse-grained screening module and fine-
grained analysis module are two most significant components
to improve the energy efficiency of the CS front-end, yet

keeping the classification accuracy. In the following section,
we continue to discuss the design of these two modules in
detail.

B. Coarse-Grained Screening Module

It is important to have a reliable hint to determine the
effort of signal category prediction in the front-end. Some low-
effort task can be completed in the sensor node, avoiding the
energy overhead of transmitting compressed data. To this end,
we consider the softmax regression, a probabilistic model, to
construct the coarse-grained screening module.

The softmax regression [7] is the extensive form of logistic
regression to deal with multi-class classification problem. As
the logistic regression, the hypothesis function hθ for the
softmax regression outputs a probability vector:

hθ(z) =


P (l = 1|z, θ)
P (l = 2|z, θ)

...
P (l = K|z, θ)

 =
1∑K

k=1 e
θkz


eθ1z

eθ2z

...
eθKz

 , (7)

where θ is the weight matrix, denoted as θ = [θ1, θ2, . . . , θK ].
Each weight component θj is a weight vector as in the logistic
regression. It is reasonable to identify the input signal as
the category with the largest conditional probability. Let zi
be the input feature vector in the training set, and li be its
corresponding multi-class label, which ranges from 1 to K.
The cost function to evaluate the hypothesis function hθ is:

J(θ) = −
∑
i

K∑
j=1

(li == j)log(
eθjz∑K
k=1 e

θkz
), (8)

where li == j is to judge the equality. If li is not equal
to the label j, the judge is false, denoted as “0”. Otherwise,
the judge is true, as “1”. Similarly, we can use the gradient
descent algorithm to minimize this cost function to search for
the optimal weight matrix θ. The derivative of the cost function
with respect to the specific weight vector θk is as follows:

∇θjJ(θ) = −
∑
i

[zi((li == j)− P (li = j|zi, θ))]. (9)

This training phase is computation-intensive, and will be
accomplished offline. Therefore, we implement the prediction
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phase into the front-end to analyze the compressed measure-
ments with the pre-trained parameters. The formal formula of
the prediction phase is as the following:

P (l = j|z, θ) = eθjz∑K
k=1 e

θkz
. (10)

When z is given, the l with the maximal probability is the
prediction category. We also take this maximal probability as
the confidence score S. It is reasonable that larger score has
more probability of correct classification.

The prediction phase of softmax has low hardware com-
plexity yet robust performance, as the coarse-grained screening
module shown in Fig. 1. When compressed measurements
come, the screening module has two parallel procedures, one
is to store the input vector and the other is to start the
prediction of softmax method. In the prediction procedure, We
first calculate the score eθjz by parallel chains, where each
chain is equipped with a multiplier, an accumulator and an
exponential calculator. Then the parallel max structures com-
pute the maximal probability and record the related category.
The confidence score compares with the pre-defined threshold
Sth. If the confidence score is larger than the threshold, the se-
lector, MUX module, chooses the prediction result for wireless
transmission, trusting the softmax classification. Otherwise,
the MUX outputs the compressed measurements buffed in the
memory.

C. Fine-Grained Analysis Module

When the coarse-grained screening module bypasses the
compressed measurements to remote server, a fine-grained
classifier is required for accurate classification without ener-
gy concerns. We adopt deep belief networks (DBN) [8] to
construct the fine-grained analysis module. DBN is a popular
algorithm in deep learning, with superior performance to the
shallow learning. It unsupervised learns the effective signal
representation from the training set. A typical framework of
DBN is illustrated in Fig. 2. It can be divided into three key
parts, visible layer, belief network and restricted Boltzmann
machine (RBM). The visible layer uses the compressed data ŷ.
The belief network extracts the feature from the visible layer.
There can be multiple layers of belief networks. The top layer
is the RBM, which uses undirected neuron connections. After
training this network, including the pre-training and finetun-
ing, the DBN can obtain signal’s predominant representation
automatically for the classification. If we add a classifier on

TABLE I. ACCURACY OF ALL THE CLASSIFIERS

CR 5% 10% 20% 30%
Comp. + Softmax (%) 72.80 80.67 97.27 98.4
Comp. + DBN (%) 85.67 92.33 97.33 98.6
Recon. + SVM (%) 84.24 91.40 96.13 98.19

the top of RBM, the entire framework can accurately complete
the classification task.

IV. EXPERIMENTS

In this section, we evaluate the performance of our pro-
posed selective CS architecture. We first introduce the experi-
mental setup and compare the accuracy of different classifiers.
After demonstrating the accuracy of the confidence score of
softmax, we investigate the trade-off improvement compared
with traditional CS architectures.

A. Experimental Setup

We choose 3000 spikes from the difficult-noise-01 case in
spike sorting dataset [9]. Each spike has the length of N=64.
The first 1500 spikes are taken as the training set and the other
spikes as the testing set. We choose four compression ratios
(CR = M/N ) in the experiment, 5%, 10%, 20% and 30%.
We use the inverse discrete wavelet transform (IDWT) as the
sparsity-inducing basis Ψ. The Bernoulli random variable is
taken as the sensing array and uniform quantization strategy
is applied. The energy model is defined as E = C ×M × b,
where the average energy consumption C = 3 nJ/bit, based
on an efficient 350 µW MSK/FSK transmitter [10]. We take
traditional CS reconstruction plus SVM as the benchmark. The
DBN runs on compressed-domain data. We use two hidden
layers with 48 neurons for each. The top classifier is the
softmax regression. The activation function is set as “sigmoid”,
the batch size is 10 and the learning rate is 0.1.

B. Accuracy of Classifiers

We examine the accuracy of three classifiers in this sec-
tion, the compressed-domain+softmax in the coarse-
grained screening, the compressed-domain+DBN in the
fine-grained analysis, and the reconstruction+SVM for
the state-of-the-art method. All the three cases have been
finetuned. The related results are shown in TABLE I.

We can find that the DBN in compressed domain holds the
best accuracy. The softmax in compressed domain is worse
than the traditional reconstruction+SVM when CR is
small (less than 10%), but has much better accuracy than SVM
when CR is large (more than 20%). In our proposed architec-
ture, the sofamax has already gained a high accuracy for the
energy-oriented coarse-grained screening. Its uncertainty will
be processed by the DBN for a better accuracy. We discuss
the detail in the next subsection.

C. Confidence Score of Softmax Regression

We investigate the distribution of confidence score S in
softmax regression to discuss the threshold Sth in the coarse-
grained screening module. We show all the results in Fig. 3
under four CRs. The blue points are the confidence scores
for each testing sample and the red rectangles mark the
misclassifications.
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Fig. 3. The confidence scores of softmax regression under different CRs.

We can observe that the majority misclassifications happen
when the softmax score S is small, between 0.4 and 0.7, in
the cases of CR = 5% and 10%. While in the other two
cases with higher CR, there are much fewer misclassifications,
resulting in a random-like distribution. We can conclude that
the misclassifications are more probable on the small softmax
score. This trend strongly demonstrates the feasibility to adopt
softmax regression to design our screening module.

D. Trade-off on Accuracy and Energy

Based on the observations of the softmax score, we depict
the accuracy-energy curve by taking Sth as a variable. In this
experiment, we range Sth from 0.01 to 1.00 with the step of
0.01. The related curves are shown in Fig. 4.

We can see that for the low CR cases, 5% and 10%,
the accuracy first increases rapidly as the total energy of
processing all the testing samples grows, and then saturates.
This is because the DBN holds much better performance than
softmax, as shown in TABLE I, resulting from its unsupervised
feature extraction. However, in the large CR cases, 20% and
30%, the accuracy has small fluctuations as the total energy
increases. The performance of softmax approximates to the
DBN. Another interesting observation is the combination of
the two methods may have better accuracy than the maximal
between them. It is possible that some misclassifications of
DBN are accidentally recognized by softmax.

Furthermore, if we take the performance of the
reconstruction+SVM in TABLE I as the accuracy bound,
we can find that the four thresholds of softmax under different
CRs are 0.62, 0.70, 0 and 0, respectively. The traditional SVM
case needs to transmit all the compressed measurements back
to the remote sever, but our proposed architecture only requires
much less data transmission burden. The energy savings are
60.27%, 54.13%, 100% and 100%, under the four CRs. This
demonstrates the accuracy-energy trade-off improvement of
our proposed selective CS architecture.

V. CONCLUSION

In this paper, we presented a selective CS architecture for
wireless implantable neural decoding. We designed two mod-
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Fig. 4. The accuracy-energy curve under different thresholds.

ules, coarse-grained screening module with softmax regression
and fine-grained analysis module with DBN, for the different
effort-level classification tasks. Experimental results validated
the data analysis in compressed domain. By the collaboration
of the two proposed modules, our selective CS architecture
gained more than 50% energy savings,while keeping the high
accuracy as the traditional CS architecture.
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