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Abstract—Sleep monitoring is receiving increased attention
in the healthcare community, because the quality of sleep has a
great impact on human health. Existing in-home sleep monitoring
devices are either obtrusive to the user or cannot provide
adequate sleep information. To this end, we present SleepSense,
a contactless and low-cost sleep monitoring system for home
use that can continuously detect the sleep event. Specifically,
SleepSense consists of three parts: an electromagnetic probe,
a robust automated radar demodulation module, and a signal
processing framework for sleep event recognition, including
on-bed movement, bed exit, and breathing event. We present
a prototype of the SleepSense system, and perform a set of
comprehensive experiments to evaluate the performance of sleep
monitoring. Using a real-case evaluation, experimental results in-
dicate that SleepSense can perform effective sleep event detection
and recognition in practice.

I. INTRODUCTION

The quality of sleep has a great impact on human health.
There is a growing recognition of adverse effects from poor
sleep quality and sleep disorders. Subjects with sleep disorders
are more likely to suffer from chronic diseases, such as
heart disease, diabetes, and hypertension. Moreover, people
are usually not being aware of sleep disorders because they
happen during sleep. Currently, it has became a chronic, under-
explored but critical health challenge in the modern life.

To date, polysomnography (PSG) is still the primary
and the most objective sleep assessment method in clinical
use [12]. An alternative sleep quality estimation method is
actigraphy, including an accelerometer and a memory storage
chip, which can provide information on movements during
sleep. Recent research is seeking for new sleep monitoring
methods and has proposed several sleep monitoring approach-
es. Rofouei et al. [11] presented a wearable neck-cuff system
for sleep monitoring. Wang et al. [13] developed a video
system to monitor sleep. Hao et al. [3] presented a smart
phone microphone-based sleep quality monitoring system.
Liu et al. [8] designed a bedsheet that comprises arrays of
pressure sensors to monitor the sleep posture. This system
also can unobtrusively monitor the breathing pattern during
the sleep [7]. Nevertheless, current sleep monitoring methods
suffer from several drawbacks, such as invasiveness, lack of
privacy, and high implementation cost. For instance, subject
wears the monitoring devices, which cause the uncomfortable
feeling and decrease sleep quality during sleep; recording the
raw video and audio signal from user raises their concerns
about privacy; high-cost limits the wide accessibility. These

limitations prevent people from the existing sleep monitoring
systems.

To address the above challenges, we present SleepSense,
a contactless and low-cost sleep monitoring system. We de-
sign and implement an electromagnetic probe based on the
commercial off-the-shelf (COTS) components, which is able to
accurately capture the sleep-related signal. Then, the sampled
baseband signal goes through a demodulation module that
uses the extended differentiate and cross multiple (DACM)
algorithm to obtain sleep-related displacement signal. More-
over, the sleep event recognition framework processes the
displacement signal and recognizes three sleep events, i.e, on-
bed movements, bed exits, and breathing events. Meanwhile,
the breathing rate is extracted via a novel breathing rate
extracting algorithm. Finally, the system is evaluated by a set
of real-case studies. Specifically, in short-term controlled study,
SleepSense demonstrates the recognition rate for breathing
event, on-bed movement, and bed exit detection, which is
98.8%, 88.6%, and 67.7%, respectively. The 75-minute nap
study demonstrates the SleepSense’s high accuracy rate for
sleep event recognition and wide usability in the real world.

The rest of paper is organized as follows: Section II
presents the overview of SleepSense. Section III describes the
implementation of SleepSense, including the electromagnetic
probe, the baseband signal demodulation module, and a sleep
event recognition framework. In Section IV, we perform sets
of experiments to evaluate the SleepSense. Finally, Section V
concludes the paper and describes the future work.

II. SYSTEM OVERVIEW

SleepSense is a contactless and cost-effective sleep mon-
itoring system, which continuously detects the sleep event
and obtains the breathing rate. Fig. 1 depicts the overall
system architecture of SleepSense. First, the electromagnetic
probe captures the sleep-related signal from the subject and
outputs the baseband signal I/Q. Then, the demodulation layer
employs an extended DACM demodulation algorithm to obtain
the displacement signal x(t). The sleep event recognition
framework, finally, extracts the sleep-event related features
from the displacement signal x(t) and classifies these sleep
events. In the meanwhile, a novel breathing rate extraction
algorithm calculates the respiration rate.
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Fig. 1. The block diagram of SleepSense: (1) electromagnetic probe; (2) baseband signal demodulation module; (3) sleep event recognition framework.

III. SYSTEM DESIGN

A. Sleep Events of Interest

Sleep is a period of inactivity and rejuvenation. During
sleep, the breathing pattern and movement distribution pat-
tern are particularly being interested, as they characterize the
different sleep states [1] [15] and are closely associated the
sleep quality. Based on the movement distribution pattern
and breathing pattern, we define three sleep events: on-bed
movement event, bed exit event, and breathing event. The on-
bed movement event contains the movements such as turn over
and arm trebling. In the breathing event, the subject keeps
still on the bed without body movements. The bed exit event
refers to the event with bed exit movement, which indicates
the interruption of sleeping state. Successful recognition of
these three interested sleep events is the basis for obtaining
the breathing pattern and movement distribution pattern.

B. Electromagnetic Probe

The purpose of our proposed system is to perform sleep
monitoring in a remote and cost-effective manner. This aim
is achieved by using an electromagnetic probe. In the past
years, the electromagnetic probe is employed to detect the
human vital signs, such as respiration and heartbeat. Huang
et al. [4] presented the feasibility of detecting heartbeat using
a electromagnetic sensor. Droitcour et al. [2] and Lubecke
et al. [10] have reported some good progress on sensing
the respiration signs. Likewise, other researchers also use the
electromagnetic probe to detect the human motion, such as
hand gesture recognition [17] and fall detection [9]. In our
case, we design and build this electromagnetic probe based on
the COTS components, which also can sense human motions.
Specifically, the electromagnetic probe generates a single-tone
carrier signal which is transmitted to the subject. When the
microwave hits the subject, the body displacement (caused
by the movement or the respiration) of the subject enables
the microwave to generate a phase shift. This phase shift
is proportional to the corresponding body displacement. By
demodulating this phase information properly, we can obtain
the displacement information.

Fig. 2 depicts our electromagnetic probe and its block
diagram. The electromagnetic probe adopts direct-conversion
radar architecture to capture the subject movement and breath-
ing signal. In the circuit implementation, as shown in Fig. 2(b),
the voltage controlled oscillator (VCO) in the transmitter
generates a carrier signal at 2.4 GHz space. The VCO also pro-
vides local oscillator (LO) to the mixer in the receiver chain.
The output power of this transmitter is around 0 dBm. A low

(a) The electromagnetic probe and
the DAQ NI-USB 6008 device.

(b) The block diagram of electromag-
netic probe.

Fig. 2. The electromagnetic probe and a DAQ device. The electromagnetic
probe captures the sleep-related signal and outputs the baseband signal, which
is digitized by a DAQ device.

noise amplifier (LNA), a band pass filter (BPF), a gain block, a
balun, a mixer, and two baseband operational amplifiers (OPs)
form the receiver chain. The LNA amplifies the received signal
at 2.4GHz. The interferences with frequencies outside the 2.4
GHz band is removed by the BPF. A gain block is adopted to
further amplify the received signal. Two OPs with the same
gain of 40 dB are used to amplify the down-converted I(t)
and Q(t) baseband signals [6]. Lastly, a NI data acquisition
devices (DAQ), NI USB-6008, digitizes the baseband I(t) and
Q(t) signal.

C. Electromagnetic Probe Baseband Signal Demodulation

Fig. 3. The principle of electromagnetic probe application.

Fig. 3 briefly illustrates the basic principle of electro-
magnetic probe-based application. The electromagnetic probe
transmits the continuous wave signal T (t) and receives the
transmission wave R(t). R(t), then, generates two baseband
signals I(t) and Q(t). I(t) is the in-phase signal and Q(t) is
the quadrature signal. In our work, for the simplicity, the I(t)
and Q(t) can be described as in Eq. (1):{

I(n) = A0cos(
4πx(n)
λ ) + DCI

Q(n) = A0sin( 4πx(n)
λ ) + DCQ

. (1)
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According to the trigonometric identities, the samples of I/Q
channels stay on a circle whose center is (DCI , DCQ) with
a radius of A0. Given the measurement of I(t) and Q(t), we
identify the three unknown parameters: DCI , DCQ, and A0

using the least square optimization method [16]. Then, we
employ an extended DACM algorithm proposed by Wang et
al. [14] to obtain the displacement signal x(t). This extended
DACM algorithm, as described in Eq. (2), avoids the discon-
tinuity problem and is robust to the random noise.

Φ[n] =
n∑
k=2

I[k]{Q[k]−Q[k − 1]} − {I[k]− I[k − 1]}Q[k]

I[k]2 + Q[k]2
.

(2)

D. Sleep Event Recognition Framework

We present the sleep event recognition framework in this
section. Fig. 4 shows the architecture of this framework,
including signal segmentation, features extraction, sleep event
recognition, and a breathing rate extraction algorithm. First, the
displacement signal x(t) is framed into short segments with the
window length of 512 samples (sampling rate is 100 Hz). This
method of segmentation is favored since it well associates the
segment with the body movement in one frame and benefits
further processing. Then, the framework extracts the features
for each segment and classifies these segments into three sleep
events: on-bed movement event, bed exit event, or breathing
event. Simultaneously, breathing rate is obtained by using a
novel breathing rate extraction algorithm.

Fig. 4. The flow chart of sleep event recognition framework, consisting of
segmentation, sleep event detection, and sleep event recognition.

1) Features Extraction: Our defined sleep events are char-
acterized with a sort of time-domain and frequency-domain
features. For instance, the breathing event has the subtle fluc-
tuation in the displacement signal x(t) in terms of amplitude
and frequency, while the on-bed movement event and bed
exit event have the relatively larger change. To represent
these three different sleep events, we, therefore, extract five
features including two statistical features, two frequency-
domain features, and a non-linear time-series feature, i.e.,
root mean square (RMS), mean crossing rate (MCR), energy,

mel-frequency cepstral-based coefficients (MFCC-based coef-
ficients), and sample entropy, which are shown in Table I.

RMS is a parameter that implies the size of signal am-
plitude, which is the strength of the subject’s movement
in our case. The RMS value varies when a dramatic sleep
movement happens. MCR, on the other hand, is the expected
rate where the demodulated signal x(t) passes the mean value,
representing the changing rate in frequency. To be specific,
it counts the times when the value is above or under the
mean value. In our cases, the on-bed movement and bed exit
movement will produce the dramatic fluctuation in terms of
frequency. Therefore, the MCR value are various for these
three sleep events. Energy is a common frequency-domain
feature in the signal processing field. Obviously, the event
with movements, such as bed exit movement and on-bed
movement, has larger energy than that of the breathing event.
Another commonly used frequency domain feature for analysis
is MFCC, especially in the audio signal processing area.
Hughes et al. [5] and Liu et al. [9] has proved that MFCC
features are effective to represent the Doppler signatures and
be employed to recognize various human activities. Likewise,
we also compute MFCC features for each segment. However,
unlike the traditional MFCC technology, which uses an mel-
filter bank to block the signal in a certain frequency range. In
our case, we do not implement the mel-filter banks, because
the frequency features of on-bed movement, bed exit, and
breathing event are in all frequency domain. Therefore, we
must keep all the frequency features in all frequency domain,
and no filter is needed. Finally, we extract the sample entropy
for each frame as the last feature, because the sample entropy
provides an enhanced method to measure the complexity and
regularity of the signal. In our case, the displacement signal
of breathing event has more regularity and less complexity
than the displacement signal of the on-bed movement and bed
exit event, thus having a distinguished sample entropy value.
After obtaining these feature vectors, the framework uses a
decision tree-based sleep event detector to separate the these
sleep events.

2) Breathing Rate Extraction: In this section, we present
the breathing rate calculation algorithm by using the novel
peak detection with adaptive threshold. The breathing signal
is similar with the trigonometric signal. A pair of peak and
valley is corresponding to a breathing event. Therefore, to
extract the breathing rate in the displacement signal x(t), the
number of pairs of peak and valley in one segment is counted.
Traditionally, this aim can be achieved by employing a general
peak detection method with the fixed threshold. The threshold
is defined as the difference between the peak (or valley) and
its neighboring values. However, during sleep, the signal of
breathing and sleep movement from different subjects usually
vary in magnitude and frequency, resulting in the inaccurate
peak detection if it employs the traditional threshold-fixed peak
finding method. Therefore, a new peak detection algorithm
with adaptive threshold is presented to resolve this issue.

When a segment of displacement signal x(n) arrives, the
proposed breathing rate extraction algorithm obtains the rela-
tionship between the breathing number and the threshold value.
Specifically, this algorithm goes through all the threshold
values from 0 to the maximal magnitude difference, and the
corresponding number of peaks (or valleys) is detected, as
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TABLE I. THE LIST OF SELECTED FEATURES.

No. Feature List Feature Definition Main Contained Info.
1 RMS The quadratic mean value of the signal Statistical information
2 MCR of changes between below mean & above mean Statistical information
3 Energy The energy over the window Frequency-domain information
4 MFCC-based Coefficients The MFCC-based coefficients Frequency-domain information
5 Sample Entropy The regularity and complexity of the distribution of the signal Non-linear time-domain information

Algorithm 1 Peak detection algorithm with adaptive threshold
Input: Demodulated signal x(t)
Output: Numbers of detected breaths

1: Obtain the max and min of input signals
2: delta = max - min
3: lookForMax = true
4: for thresh = 0 to delta do
5: for all points of input signal do
6: if dataV alue < currentMin then
7: Update currentMin

8: if dataV alue > currentMax then
9: Update currentMax

10: if lookForMax == true and dataV aule <
(currentMax - thresh) then

11: Record the peak
12: Update currentMax
13: lookForMax = false

14: if lookForMax == false and dataV aule >
(currentMin + thresh) then

15: Record the valley
16: Update currentMin
17: lookForMax = true
18: Find the most flat region and obtain the breathing numbers

shown in Fig. 5. In Region A and Region C, where the
breathing number varies largely according to the threshold
index. It means that the detected breathing number experience
a large variability when the threshold value changes with a
small value, representing the sensitivity to the random noise.
However, in the most flat Region B, the breathing number
stay unchanged when the thresholds increases, which implies
that most of the random noise is ignored and only the true
peaks are countered. Therefore, the breathing number, which is
corresponding to the most flat area, is obtained. The description
of breathing rate extraction algorithm is explained in detail in
Algorithm1.

Fig. 5. A peak detection with adaptive threshold example. In this example,
region A and region C have the inconsistent breathing numbers, implying
it is sensitive to the random noise. However, region B corresponding with
the most flat area has the most consistent values, which are the actual peak
numbers.

IV. EXPERIMENTS

In this work, we perform several experiments to evaluate
SleepSense. There are two sets of experiments. First, we have
a short-term sleep study to quantify the system performance
in a controlled setup. Second, we conduct a long-term sleep
study, which focuses on the system usability in a naturalistic
setup.

A. Experimental Setup

In the experiment, the subject lies on a mattress, as shown
in Fig. 6. The electromagnetic probe is located on the top
of subject with the distance of one meter. For simplicity,
we employ a NI DAQ device (NI USB-6008) to sample the
baseband signal at 100 Hz. This NI DAQ device can be
replaced by any other DAQ devices or self-customized DAQ
devices to reduce the implementation cost. Simultaneously, an
airflow sensor and an accelerometer provide the ground truth
signal for the breathing and movement signal.

Fig. 6. The experimental setup: the subject lies his back on a mattress. The
electromagnetic probe locates on the top of the chest with the distance of one
meter. In the meanwhile, an airflow sensor and an accelerometer sensor are
attached to serve as the ground truth measurements.

B. Quantitative System Performance Evaluation

This short-term controlled study aims to qualitatively ex-
amine the performance of SleepSense system.

1) Data Collection: The data collection in this section
follows the experimental configuration in section IV-A. Three
subjects participated in the short-term controlled study. Their
ages are 25 to 28 years, heights 180 to 185 cm, weight 80 kg
to 100 kg. Each subject performs 4 sets of on-bed movement
tests and 10 sets of bed-exit tests. In each on-bed movement
test, the subject lies on his back and remains still on the
mattress. After 25 seconds, the subject, then, follows turns over
and remains still in the next 25 seconds. Finally, the subject
changes back to lie on his back on mattress. Each subject
repeats aforementioned steps three times in one test. In total,
we acquire 12 groups of on-bed movement and 40 groups of
bed exit.
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2) Sleep Event Detection Accuracy: The SleepSense sys-
tem processes the acquired data from the aforementioned
sets of tests with the framework in Section III-D. The result
shows that the overall accuracy is 95.1%, which we defined as
the overall probability that the event is recognized correctly.
The event detection confusion table is shown in Table II. In
case of on-bed movement recognition, the SleepSense system
successfully distinguishes 93 segments from the total 108
segments labeled with on-bed movement. In term of bed
exit recognition, it recognizes 21 segments from the total
30 segments labeled with bed exit. In the case of breath-
ing event, SleepSense identifies 405 segments from the total
408 segments. Noticeably, the classifier can distinguish the
bed exit and breathing event precisely. No breathing events
are recognized as the bed exit. It is the same for bed-exit
recognition. This is because the features of the bed exit and
breathing event vary dramatically in terms of time domain or
frequency domain. However, the classification result for bed
exit and on-bed movement event is inferior, because some of
on-bed movements and bed-exit movements share the same
features, such as the fast frequency and the large amplitude
in the movement. There are also some errors for the on-bed
movement and breathing event recognition, which is caused
by the windowing issue. Specifically, because we employ the
fixed length window in the segmentation, a movement may
be incorrectly divided into two segments and loses the on-bed
movement features, leading to the misclassification case.

TABLE II. THE CONFUSION MATRIX FOR THE SHORT-TERM
STUDY.

On-bed
movement Bed exit Breathing event Precision

On-bed
movement 93 10 5 88.6%

Bed exit 9 21 0 67.7%
Breathing event 3 0 405 98.8%

Recall 86.1% 70.0% 99.3%

3) Breathing Rate Extraction: We verify the proposed
breathing rate extraction algorithm by employing it on a short
breathing signal, which is described in Fig. 7. It is an except
from a relative long breathing signal. From the demodulated
signal, we can observe that the breathing number is 21 during
the 60 seconds. By applying the peak detection algorithm with
adaptive threshold, we can obtain the relationship between
breathing numbers and threshold values in the top of Fig. 7.
According to the algorithm, we look for the most flat region
on the signal, which is zoomed in the upper part. The most flat
region is circled by the red rectangle and the corresponding
breathing number is 21. Because the breathing rate algorithm
employs different threshold values to calculate the number of
peaks. Therefore, this algorithm can detect different values of
peaks based on different threshold values. The red dots, as
shown in the bottom of Fig. 7, are a group of detected peaks
based on specific threshold values.

C. Real-case study

We also perform a long-term and real-world case study.
This 75-minute nap experiment evaluates the wide usability
and high accuracy of SleepSense in the real world.

1) The 75-minute Nap Study: The data are collected during
a nap of one subject. Similarly, we deploy airflow sensor
and acceleration sensor on the subject to establish the ground

Fig. 7. The top sub-figure is the relationship between the detected breathing
number and threshold value index. The bottom sub-figure is the detected peaks
using a specific threshold value.

truth for breathing and movement signal. The displacement
signal is shown in Fig. 8(a). The sleep event recognition
framework frames the 75-minute signal into small segments.
The ground truth in Fig. 8(b) shows that it has a total of 4
on-bed movements and 1 bed exit. Others are the breathing
events. Because the duration of the on-bed movement exceeds
the frame length, which is 5.12 seconds, two consecutive
frames, thus, contain one movement signal. Therefore, there
are total 8 frames that labeled as the on-bed movement event.
The total number of breathing event frames is 869. Only 1
frame is labeled as the bed exit event. Finally, the trained
sleep event detector in section IV-B processes all these frames.
These segments will be classified into three sleep events: on-
bed movement, bed exit, or breathing event. Considering that

(a) The demodulated 75-minute displacement signal from SleepSense.

(b) The movement signal from the accelerometer sensor.

(c) The breathing rate curve of the 75-minute long-term monitoring data. The
gray area is the error.

Fig. 8. (a) is the demodulated signal (75 minutes) from the SleepSense
system; (b) is the ground truth provided by accelerometer; (c) is the breathing
rate for this 75-minute nap with the airflow sensor as the ground truth signal.

there is only one bed-exit event, we focus on the evaluation
of on-bed movement and breathing event detection. The result
shows that the overall accuracy rate for sleep event detection
is 99.54%. Specifically, in this test, SleepSense distinguishes
868 breathing event frames. We note that the recognition
rate for on-bed movement event detection is relatively lower,
because of the two misclassified on-bed movement frames. The
misclassification cases may be caused by the aforementioned
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windowing issue.

Moreover, we calculate the breathing rate by averaging
the breathing counts in the previous 20 windows. Fig. 8(c)
demonstrates the overall breathing rate for this short period
of sleep. Specifically, the red curve is the estimated result by
using the SleepSense system. The black curve is the ground
truth signal. These two curves are matched similarly. Both are
about 18 breath per minute (BPM). We can observe that the
breathing rate varies during sleep in Fig. 8(c). When the sub-
ject is going to fall asleep, the breathing rate is more irregular,
which changes between 20 BPM and 10 BPM in region A.
However, the breathing rate becomes stable when the subject
falls asleep. At the end of sleep, the breathing rate experiences
another level changing. An interesting phenomenon is that
when the subject changes sleep position, it is associated with
a reducing breathing rate.

Furthermore, we quantify the error between the
SleepSense-measured result and the ground truth signal
by using the area under the curve (AUC) method as shown in
Eq. (3):

Error Rate =
|AUC(SleepSense)−AUC(GroundTruth)|

AUC(GroundTruth)
.

(3)
We define the overall error rate as the ratio of total area
difference between the SleepSense-measured result and ground
truth to the total ground truth area. The overall error rate is
only 6.65%, which is the gray area in Fig. 8(c).

The error is caused by two factors: the on-bed movement
and side sleep position. Fig. 8(c) shows a rising error rate (grey
area) near the location where the subject changes to a different
sleep position. This is because when an on-bed movement
occurs, it is difficult for SleepSense to extract the breathing
rate from that frame. However, the SleepSense will use the
breathing number in the preceding frame that has no on-bed
movement signal instead, therefore, causing the increased error
rate. Another factor is the sleep position as seen from Fig. 8(c).
The subject changes the sleep position from supine to side
sleep and side sleep to supine four times during the nap. The
error rate varies for different sleep positions. Specifically, the
error rate is considerably lower when the subject is in the
supine position. When subject changes the sleep position to
the side, the chest displacement is less significant, and the
breathing signal become relatively weak for the subject who
is in side sleep position. The performance of the breathing rate
extraction algorithm diminishes correspondingly.

V. CONCLUSION AND FUTURE WORK

In this paper, we present the SleepSense, a contactless
and low-cost sleep monitoring system, which discriminates
various sleep events and extracts the breathing rate accurately.
In the implementation of SleepSense, we propose a novel
signal processing framework for sleep event recognition, which
contains feature extraction and the sleep event classification. A
novel breathing rate extraction algorithm is devised to calcuate
the breathing rate. We further empirically demonstrated the
effectiveness of SleepSense in a short-term controlled study
and a long-term real-case study. SleepSense can effectively
identify the on-bed movement, bed exit, breathing event and
extract the breathing rate with a high accuracy rate and wide

usability. In the future, we will address the encountered issues
such as the segmentation issue and side sleep position issue
to improve the performance of SleepSense. Moreover, we
will build a personalized sleep monitoring system using the
acquired breathing pattern and movement distribution pattern
provided by SleepSense.
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