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Abstract—Inside-out pose tracking of hand-held controllers is
an important problem in virtual reality devices. Current state-
of-the-art combines a constellation of light-emitting diodes on
controllers with a stereo pair of cameras on the head-mounted
display (HMD) to track pose. These vision-based systems are un-
able to track controllers when they move out of the camera’s field-
of-view (out-of-FOV). To overcome this limitation, we employ
sensor fusion and a learning-based model. Specifically, we employ
ultrasound sensors on the HMD and controllers to obtain ranging
information. We combine this information with predictions from
an auto-regressive forecasting model that is built with a recurrent
neural network. The combination is achieved via a Kalman filter
across different positional states (including out-of-FOV). With
the proposed approach, we demonstrate near-isotropic accuracy
levels (∼ 1.23 cm error) in estimating controller position, which
was not possible to achieve before with camera-alone tracking.

Index Terms—Ultrasound Ranging, Virtual Reality, Pose Esti-
mation, Autoregression, Recurrent Neural Networks

I. INTRODUCTION

Virtual reality (VR) systems provide users with a remark-
able interactive computer-generated experience. For these sys-
tems, an ability to render the correct controller position is vital
to increasing user immersion. Two approaches have been used
to determine the position of hand-held controllers in real-time
as they move around the user: inside-out tracking [1], [2] and
outside-in tracking [3], [4]. In the former, cameras and sensors
are located directly on the head-mounted display (HMD) and
controllers, while in the latter, they are placed at a stationary
location [5]. Although inside-out tracking systems compromise
on tracking accuracy, they help reduce costs and improve
deployment efficiency. They are also the focus of this work.
A primary method used for inside-out tracking is based on
stereo vision, where a pair of cameras track a group of visible
or infrared light-emitting diodes (LEDs) as they move around
in 3D space. Researchers have demonstrated accurate tracking
of these LEDs with decimeter-level errors [6]. However, these
techniques do not work well in the presence of heavy sunlight
or when the controllers (and the LEDs attached to them) move
out-of-FOV. These limitations restrict tracking to a conical
volume in front of the cameras, and hurt the interactive user
experience [7].

Existing methods to improve tracking performance in VR
have primarily focused on the HMD. Authors in [8] have pro-
posed to compute the position and orientation of the HMD via

Fig. 1. The proposed approach fuses distance and position estimates from an
ultrasound ranging model and an RNN model, respectively for out-of-FOV
tracking.

magnetic-field analysis. Other approaches have used mounted
cameras to capture LED beacons and infer head motion [9].
One of the first papers to look into tracking controller pose is
[10], where the authors have utilized controller information
for gesture recognition. There are also several commercial
VR systems available that employ inside-out methods for
controller tracking [11]–[13]. In this paper, we consider a
Windows mixed reality (MXR) headset from Samsung as a
baseline [12]. We instrument this HMD and the associated
controllers with ultrasound transceivers, which we utilize for
real-time distance estimation based on time-of-flight (ToF)
calculations. We combine this information with predictions
of position from a recurrent-neural network (RNN) model to
accurately track the controller pose in 3D space. Next, we
present details of our system.

II. SYSTEM APPROACH

An overview of our methodology is shown in Fig. 1. It com-
prises: (1) an ultrasound system to determine a spatial sphere
where the controller is likely located, (2) a RNN prediction
model to learn continuity in the controller movement: utilizing
the past controller position information to forecast the future,
and (3) a fusion system that integrates the aforementioned
ranging and prediction data to generate the final prediction of
the controller position. In this section, we provide details of
each of these subcomponents.



Fig. 2. Proposed ultrasound system: (a) has separate synchronization and data
layers, (b) enables 1D-localization.

A. Ultrasound-based Distance Estimation

First, we estimate the distance between controllers and the
HMD. The key idea of ultrasound distance estimation is based
on ToF analysis. Suppose, we place an ultrasound transmitter
on the HMD and a receiver each on the controllers. The
distance d(t) at any time t between a controller and the HMD
can be estimated as follows:

dus(t) = νus ∗ ttof
= (331 + 0.6 ∗ T ) ∗ ttof ,

(1)

where, νus is the speed of sound (a function of temperature
T ) and ttof is the ToF of the ultrasound pulse.

Time synchronization. Since the ultrasound transmitter
and receivers are independently operated, they need to be
synchronized in time in order to compute distance dus(t) based
on Eq. (1). This is a non-trivial process because the transmitter
and receiver operate wirelessly and are driven by separate
clocks. In our case, the synchronization process needed to be
computationally inexpensive because of energy limitations of
the micro-controller (MCU) and real-time constraints of the
system. Thus, we utilized a separate light-weight WiFi-based
synchronization layer shown in Fig. 2(a). This and the commu-
nication layer were implemented based on the user datagram
protocol (UDP) that were operating on non-interfering chan-
nels [14]. Within the synchronization layer, we employed a
statistical method to model delay distributions and compensate
for environmental disturbances and UDP protocol overheads.
Limited MCU capabilities also affected the design complexity
of ultrasound sensing. Through multiple transmitter-receiver
pairs, it is possible to achieve 3D localization. However, this
incurs extra computation, which was not sustainable on the
MCUs that we used. Thus, we limited ourselves to a single
transmitter and receiver that were able to produce distance
estimates dus(t) in near real-time.

B. Learning-based Trajectory Prediction

Suppose, ~c(t) = (xc, yc, zc) and ~h(t) = (xh, yh, zh)
represent the true 3D controller and HMD positions, re-
spectively in the room-coordinate system. Note that ~h(t) is
always provided by the VR platform. We utilized in-FOV
position estimates [~c(1), . . . ,~c(k)], which were also available
from the VR platform, to train a model that could predict

future positions ~m(t), for all t ∈ (k + 1, . . . , k + p). This
constituted a forecasting problem, which could be solved
through well-known autoregressive-modeling techniques like
ARMA, ARIMA etc [15]. After some experimentation, we
decided to use a long short-term memory (LSTM) network
because it gave the best predictive performance on sequences
of time varying vectors. Specifically, the LSTM network is
a deep and recurrent model of neural networks. It takes a
stack of features extracted from the input [~c(1), . . . ,~c(k)], and
produces a refined stack of feature maps entering in the learned
prior module. The LSTM works by sequentially updating an
internal state, according to the values of three sigmoid gates.
Typically, the update is driven by the following equations:

It = σ(Wi × ~ct + Ui ×Ht−1 + bi)

Ft = σ(Wf × ~ct + Uf ×Ht−1 + bf )

Ot = σ(Wo × ~ct + Uo ×Ht−1 + bo)

Gt = tanh(Wc × ~ct + Uc ×Ht−1 + bc)

Ct = Ft � Ct−1 + It �Gt

Ht = Ot � tanh(Ct),

(2)

where the It, Ft and Ot are the 3D activation vectors for
input gate, forget gate as well as output gate. Ht is the
hidden state vector which stores the memory and Ct is the
output cell state vector. The usage of these so-called memory
blocks instead of conventional hidden cells which allow them
to access and model a self-learned amount of long-range
temporal context [16], [17]. Its ability to learn from the
past makes LSTM a good candidate to predict continuous
movements of the controller [18], [19].

C. Data Fusion for Pose Tracking

It is important to note that in the absence of any additional
information, continuous predictions ~m(t) from the machine-
learning model are reliable only up a small number of future
samples (typically p ≈ 1 − 10, depending on the prediction
frequency). Thus, if the controller goes out-of-FOV for a
long duration of time, the LSTM model alone is not able
to track position accurately. To overcome this limitation, we
periodically correct position estimates using the ultrasound
system described in the previous section. Thus, we rectify
deviations in the LSTM model (based on low-rate ultrasound
measurements) and are able to keep predictions accurate for
longer duration of time.

Consider the scenario where a user moves the controller
from the cameras view to out-of-FOV (e.g., drawing a sword
from the back or holding a shield on the side in a VR
game). As mentioned before, once the controller goes out-
of-FOV, camera-based systems lose track of it and our goal
is to properly estimate the controller position. We do so by
fusing 3D-position predictions from the trained LSTM model
with distance estimations from the ultrasound sensor. We
utilize distance estimates dus(t) from the ultrasound ranging
system to localize the controller position in one-dimension
as shown in Fig. 2(b) [on to the surface of the sphere
(x − xh)2 + (y − yh)2 + (z − zh)2 = d2us]. Specifically, for



Fig. 3. Ultrasound ranging system integrated with the HMD.

each prediction ~m(t) = (xm, ym, zm) from the LSTM model,
we compute vector distances from the HMD as follows:

dm(t) = ||~m(t)− ~h(t)||2

We fuse distance output from the model dm(t) with dus(t),
obtained from the ultrasound ranging system (separate obser-
vation channel), using a Kalman filter (KF), which is a popular
choice for estimating user motion in VR applications [20],
[21]. We combine the KF distance output, denoted by df ,
with knowledge of the sphere that is centered around the HMD
on which the controller is likely located. This is achieved by
finding the minimum projection of ~m(t) on the sphere, which
is basically a point that lies along the line that passes through
~m(t) and ~h(t), i.e., the center of the sphere. Thus, the mini-
mum projection [final position estimate ~p(t) = (xp, yp, zp)] is
obtained via the following relationship:

~p(t) =
dus(t)

df (t)
×
[
~m(t)− ~h(t)

]
+ ~h(t).

III. EXPERIMENTAL RESULTS

In this section, we present details of our evaluation system
and studies on ultrasound ranging and tracking performance.

A. Hardware and Software Setup

As shown in Fig. 3, we attached four ultrasound transmitters
to the HMD in order to cover the 360-degree space. We used
one ARM Cortex M0 based MCU to sequentially transmit
initialization beacons and ultrasound pulses (unmodulated 42
kHz) from the four transmitters. Each controller also had the
same MCU, which managed an ultrasound receiver that was
operated in a continuous scan mode. The two MCUs were
synchronized over WiFi every 50 ms, and they utilized 200 ms
to send-and-receive data cyclically through the four ultrasound
transceivers. We used another 50 ms window to compute
ultrasound distance and upload the data to a desktop PC via
a different WiFi UDP channel. With careful mean filtering
of the delays, we were able to achieve time synchronization
of under 230 us (deviation of 272 us). We also used sensor
power levels that allowed us to transmit ultrasound pulses and

Fig. 4. Evaluation framework and detailed specifications.

estimate distances in the range 20-100 cm [22]. The MCUs
and sensors were powered by a portable lithium (500 mAh)
battery. For simplicity, we only present experimental results
for tracking a single controller.

Our software system and modeling framework were built
in Python and C#. We utilized SteamVR SDK within the
Unity environment to collect tracking data from the intrinsic
camera-based system [23]. Specifically, we obtained HMD
position ~h(t), controller position ~c(t), and the tracking status
(i.e., whether the controller was inside-the-FOV or out-of-
FOV). The data was sampled at 50 Hz. We developed our
LSTM models in TensorFlow. For real-time operation, we
implemented the proposed prediction models locally on a
PC with 16 GB DDR4 RAM, 3.4 GHz, 16 core 2x Intel
Xeon CPUs, and an Nvidia GTX 1080p GPU. We trained
multiple LSTM models on a GPU cluster and converged on
using 2 recurrent layers with 1024 units. We used the Adam
optimization algorithm, mean-squared error loss function, and
a dropout rate of 0.2 between the layers.

B. Ground Truth and User Data Collection

In order to obtained ground-truth for the controller position,
we used the OptiTrack motion-capture system with eight Flex3
cameras [24]. Through periodic re-calibration, we ensured that
the ground-truth had sub-millimeter accuracy. The sampling
rate of the OptiTrack system was 100 Hz, and we used the
latest version of Motive software to process the data [25]. After
an internal approval process, we invited subjects in the age
group of 26-36 for data collection. Each of them performed
trials based on the required motion with the MXR system
instrumented with the custom ultrasound rig. To avoid move-
ment fatigue, we limited data-collection to 10 trials. Each trial
lasted for 12 minutes and the subject repetitively performed
the motion. The trial was further segmented into a series of
complete motion cycles based on the timestamp references



captured by the OptiTrack system. After cleaning and filtering
the data, we were able to obtain good measurements for about
2 hours of motion data. Thus, we collected nearly half-a-
million position samples in total that were calibrated well
with ground-truth data. We used 80% of these samples to
train LSTM models, and the rest for evaluation. An overview
of the end-to-end experimental setup and details of the data-
collection process are summarized in Fig. 4.

(a) We evaluate the ranging per-
formance of different linear dis-
tances between the transmitter and
the receiver. Generally, the system
achieves the optimal performance in
the range of 30-60 cm.

(b) We fix the linear distance as
45 cm and evaluate the ranging per-
formance when the transmitter and
the receiver have different angles in
two axes. The green color indicates
high accuracy.

Fig. 5. Performance of ultrasound ranging along the azimuthal axis and
altitude.

C. Performance of Ultrasound Ranging

We evaluated the ultrasound ranging system at different 3D-
positions of the controller and HMD. First, we varied distances
from 15-100 cm, along the azimuthal axis. Fig. 5(a) shows
that the ranging system achieves an average tracking error
of 9.74 cm. The primary sources of this error were time-
synchronization and pulse latching at the receiver. However, in
the distance range of 30-60 cm (which is the typical operating
distance), the errors were much lower. Error increase with dis-
tance could potentially be mitigated by increasing transmission
power-levels. We also validated the ranging performance along
the altitude (results in the 0-90◦ range at a fixed linear distance
of 45 cm are shown in Fig. 5).

We analyzed ranging accuracies during a complete move-
ment of drawing-a-sword from the back; the controller moved
from inside-the-FOV to out-of-FOV. As shown in Fig. 6, the
MXR system is quite accurate inside-the-FOV. However, it
loses track of the controller when it moves out-of-FOV (see the
dotted box in the figure). Fortunately, the ultrasound ranging
system is still able to track the controller with an average error
of 5.82 cm. From the figure, we also observe an increase in
the ranging accuracy when the ultrasound estimates are fused
with the LSTM prediction via the KF.

D. Accuracy of Pose Tracking

Our LSTM-based autoregressive model exploits continuity
of hand movements to make accurate predictions of future
pose. Fig. 7 shows results from our LSTM model that utilizes
50 prior samples along a sliding window to predict future
samples. We see from the figure that the LSTM-model is

Fig. 6. The results show that the ultrasound ranging is accurate for out-of-
FOV tracking. Fusing the ultrasound ranging result with LSTM predictions
can boost the system accuracy.

Fig. 7. Predictions from the LSTM model closely track ground-truth pose
trajectory. Both axes contain the values in units of meters.

able to closely track the OptiTrack position estimates with an
average tracking accuracy of 1.71 cm, which was computed
by calculating the Euclidean distance between the prediction
sequence and ground-truth position values.

When the controller goes out-of-FOV for large durations
of time, LSTM-based autoregression entails re-use of pre-
dicted samples for future prediction. This accumulates error
in every predicted sample and later pose estimations tend to
deviate substantially from the ground truth. To overcome this
limitation, we invoke our data-fusion framework (Sec. II-C)
that includes rectification through distance measurements ob-
tained from the auxiliary ultrasound system. This periodic
correction thus helps bring LSTM-prediction errors back to
under 2 cm, when predicting 10 s of samples into the future.
An example trajectory is shown in Fig. 8. Future work will
involve characterizing the full sample-duration of predictive
tracking, tackling issues of non-smooth prediction, improving
the neural network architecture with multiple-input-multiple-
output design, larger-capacity units, and a combination of
several direct h-step estimation models.



Fig. 8. Our proposed data-fusion system is able to track the controller position
over multiple samples into the future. Both axes contain the values in units
of meters.

IV. DISCUSSION

Two controllers scenario: For the purpose of demonstra-
tion, we reported above how our system can track the position
of a single controller. However, two controller scenario is
also applicable. Note that the ToF is independently calculated
by the ultrasound receiver mounted on each controller based
on the broadcast synchronization signal. Once each controller
measured its current distance towards to the HMD, it sent the
data back to the MCU located on the HMD with its own ID
so that later on, the data can be properly differentiated.

Multiple subjects scenario: So far, we only considered
one subject scenario because most of the VR games re-
quire the physical presence of one player. To support the
multiple subjects scenario, the synchronization layers of the
transmitter-receiver ranging systems need to be independent
from each other so that the synchronization beacons will not
be interfered. Specifically, the UDP protocol can be replaced
by the transmission control protocol (TCP). However, the
propagation and reflection of multiple ultrasound waves in a
close environment need to be further considered and studied.

V. CONCLUSIONS

In this paper, we developed a methodology to estimate VR-
controller positions in real-time when the controllers move
out-of-FOV of cameras on the HMD. Our approach was based
on fusing distance measurements obtained from an ultrasound-
measurement system with position estimations from an LSTM-
based autoregression model. Through a complete system and
user-collected data, we demonstrated accurate tracking of
controllers both in-the-FOV and out-of-FOV with estimation
errors of under 2 cm. Thus, our approach enables 360-degree
controller tracking, which increases the immersion ability of
emerging VR devices.
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