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Abstract—With the growth of the elder population, fall risk
evaluation is crucial to prevent elders from serious injuries, as
well as reduce related financial burdens. A balance assessment,
Timed Up and Go (TUG), has been widely used to estimate
fall risk. The standardized TUG focuses on flat ground walking
with no environmental variance. Therefore, it falls short of
assessing an individual’s gait adaptability. Being able to adjust
steps in response to environmental changes, for example, needing
to navigate around or over a child’s toy left on the sidewalk,
is essential to avoid fall risk and fundamental to community
ambulation. To this end, we propose four environment-adapting
TUGs designed to assess one’s ability to adapt gait in complex
environments and a compatible system named Smart Insole TUG
(SITUG), which provides real-time, feature-rich, and ease-of-
operation TUG analysis. Based on experimental results, SITUG is
capable of extracting gait related spatial-temporal features with
all mean accuracies over 92%. Besides, the system achieves a
mean accuracy of 92.23% in segmenting five TUG phases.

I. INTRODUCTION

ACCORDING to an aging statistics [1], the older pop-
ulation is tremendously expanding; approximately 98

million elders will live in the United States by the year
2060. With this ongoing growth, the older population’s health
condition increasingly draws attention. Falls are the leading
cause of injury and fatality among older adults. An older adult
receives emergency services every 11 seconds due to a fall.
Furthermore, there is a death every 19 minutes due to a fall
[2]. Financial burdens associated with falls are oppressive as
well. The total cost of fall injuries was 34 billion U.S. dollars
in 2013 and the cost is trending upward [2].

Timed Up and Go (TUG) is recommended by the American
Geriatric Society and the British Geriatric Society [3] and
has been widely applied for gait and fall risk assessment.
However, the standardized TUG analysis simply relies on the
amount of time to complete test procedure and ignores the
value of kinematic data. As criticized by studies [4]–[7], the
standardized assessment is not comprehensive enough to fully
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evaluate an individual’s risk of falling. For improving the
deficiency, novel measurements of TUG deploy technological
devices for collections of detailed test data and significantly
increase the reliability of fall risk estimation [7]. Nevertheless,
further advancements are still needed due to their inconve-
niences. Most of the technology-based TUG measurements
require multiple sensor attachments on each testee’s body or
bulky devices (e.g., cameras and tablets) nearby [7]–[9]. In
addition, many of them are incapable of providing feature-rich
and real-time TUG test results.

Apart from the insufficiency or the inconveniences of stan-
dardized and technology-based TUG measurements, another
justifiable concern about TUG is that it only involves move-
ments on a clean and flat platform with severely limited
environmental variances. Thus, it is incapable of testing gait
adaptability, the ability to adjust gait in response to environ-
mental changes [10], which is strongly related to fall risk [11],
[12]. External, situational factors (e.g., obstacles and inclines)
can be effective in provoking, testing gait adaptability [10] and
promoting fall risk analysis [12], [13]. Despite the drawback of
TUG (i.e., no external factor), virtues are worth preserving. For
instance, TUG procedure involves representative movements
(e.g., stand up, walk, turn, and sit down) in our daily life
requiring no complex instruction. Therefore, we invented four
environment-adapting TUGs involving an extended distance,
an incline, or obstacles (see Section II-C). Clearly, an unob-
trusive system is of great importance for assessing TUG with
external factors.

To this end, we introduce a feature-rich, real-time, and ease-
of-use system for assessing TUG with or without obstacles and
inclines. Our system, Smart Insole TUG (SITUG), enhances
TUG measurements by facilitating data collection and aug-
menting data analysis. The system is built based on a sensor-
equipped insole, a smartphone application, and a cloud service
module. It is capable of extracting rich gait features, offering
advanced information about an individual’s mobility. Based on
these features, SITUG provides further information related to
falls by distinguishing five phases of TUG process. Compared
to an earlier version of SITUG [14], this work presents a more
adaptive and mature system in terms of gait analysis and TUG
segmentation (see Section IV) .

II. PRELIMINARIES

A. Timed Up and Go
Timed Up and Go (TUG) is a well known screening test

used in fall risk analysis. It consists of fundamental, represen-
tative daily life movements requiring no lengthy instruction
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and training. In a regular TUG procedure, the subject is asked
to get up from a chair, walk a 3-meter distance on the flat
ground at a comfortable pace, turn around, walk back to the
chair, and then sit back down [7]. Nevertheless, TUG and
its standardized measurement can be insufficient for compre-
hensive fall risk estimation. The standardized determination
of high fall risk is based on the total time to complete
the procedure; a subject’s kinematic data are not recognized
leading to lost information in mobility and balance analyses
[4]. Moreover, TUG involves only flat ground walking with
no environmental variance. It is reasonable to criticize the ca-
pability of TUG in assessing an individual’s ability to perform
suitable gait patterns for coping with environmental variances,
i.e., gait adaptability [10], which significantly contributes to
falls [11], [12]. Overall, it is demanded to analyze TUG from
an in-depth perspective with meaningful quantitative features
and considerations of gait adaptability.

B. Sensor-based TUG Analysis

Sensor-based TUG analysis is developed for providing
useful kinematic data. By deploying camera and inertial
measurement units (IMU), novel TUG analysis systems are
able to extract meaningful gait and TUG features. In some
camera-based measurement studies [15], [16], the total taken
steps and the duration of some test phases (e.g., turning and
sitting down) are extracted automatically via video filming.
Knowing the time taken in different TUG phases improves
the reliability of estimating fall risk [7]. However, the camera-
based methods have obvious drawbacks in practical usages.
The camera setup is crucial. The position of cameras and the
lighting of environments must be carefully adjusted. Moreover,
they cannot monitor and assess in-depth kinematic data, like a
detailed orientation of foot, which can be described as pitch,
roll, and yaw angles.

IMU-based measurement systems utilize an electronic de-
vice which contains accelerometers, gyroscopes and more,
offering linear accelerations and angular velocities of move-
ments. These systems provide representative data of gait (e.g.,
stride count and stride length) and detailed information of
TUG process (e.g., turn time and walk time) [7]. However,
they require either clumsy sensor attachments or bulky devices.
For instance, a reliable instrumented system, named iTUG
[8], needs seven sensor attachments over the human body.
Another well-developed system, QTUG [9], depends on two
sensors and deploys an inconvenient tablet rather than a handy
smartphone. Additionally, the data feedback of some systems
is relatively tardy, like iTUG [8] which provides no real-time
test report.

C. Environment-adapting TUG

About 31% of falls in elders are accident and environment
related [17]. Poor gait adaptability can contribute to falls
under environmental variances (e.g., obstacles and inclines)
placing elders at an increased danger [10], [11]. Studies have
provoked and examined the gait adaptability by assessing
obstacle or incline involved walking strategies [12], [18], [19],
which can provide further fall risk related information. For

Fig. 1. Four environment-adapting Timed Up and Go tests: (a) Extended TUG:
standardized TUG with the extended distance; (b) Incline TUG: TUG with
the incline factor; (c) Bypass TUG: TUG with the obstacle factor. Participants
should go around obstacles; (d) Overpass TUG: Participants should step over
obstacles.

examples, older adults with high fall risk demonstrate shorter
step lengths and slower walking velocity compared to elders
with low fall risk while walking on an incline [13]; in settings
with obstacles, the aforementioned quantitative declines in
step length and walking velocity are more distinct in older
participants with higher fall risk compared to younger testees
[19]. Overall, the gait adaptability can be elicited by involving
obstacle, incline in walk producing informative fall risk related
data. Consequently, we developed four environment-adapting
TUGs to improve the standardized TUG setup with lack of
induced gait adaptability, which are introduced as follows:

• Extended TUG: the extended version of the standardized
TUG. The distance between the chair and the turning
point is 7 meters as presented in Fig. 1(a).

• Incline TUG: the walking should happen on an incline.
Other activities (e.g., turning, standing up, and sitting
down) are still performed on flat ground (see in Fig. 1(b)).

• Bypass TUG: each subject should avoid four obstacles
on flat ground by passing aside the obstacle (see in Fig.
1(c)). The displacement is 7 meters and the estimated
walking distance is 7.75 meters from the chair to the
turning point.

• Overpass TUG: details are shown in Fig. 1(d). Every
subject avoids three obstacles on flat ground by stepping
over the obstacle.

D. System Design Consideration

Current sensor-based TUG analysis systems are not con-
venient and comprehensive enough for environment-adapting
TUGs since they require clumsy on-body sensors, nearby
devices, or provide half-baked, dilatory data analyses. Un-
der obstacle and incline involved situations, environmental-
adapting TUGs demand a light and smooth system offering
fine-grained data processing. After careful considerations, our
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Fig. 2. The overall framework of our proposed system, SITUG. It contains a sensor embedded device, Smart Insole, a matched smartphone application, and
a cloud service module. A photo of the actual Smart Insole is presented under Sensor Embedded Device. Pictures of the smartphone app are placed under
Smartphone Application.

system named Smart Insole TUG (SITUG) should satisfy the
following requirements:

• Unobtrusive: no sensor attachment or camera setup.
• Comprehensive: well considered data analysis.
• Reliable: high accuracy in gait and TUG data analysis.
• Robust: no trouble with different walking environments.
• Real-time: accessible real-time test results.

III. SYSTEM DESIGN

A. Design Overview

As shown in Fig. 2, our system is comprised of a sensor em-
bedded device, a smartphone application, and a cloud service
module. The sensor embedded device, named Smart Insole,
collects quantitative data such as angular velocities, linear
accelerations, and pressures, during each test performance. The
smartphone application is acting as a bridge between the Smart
Insole and the cloud service module. Commanded by the
application through Bluetooth, the insole collects and transfers
raw data of each test. The application wirelessly receives and
uploads the collected raw data to our cloud service module
for operating the data pre-processing and the TUG analysis.
At the end, a test report is sent to the smartphone application.
Furthermore, our cloud service module can save physical
information and test histories of each user. Followings are
descriptions of different modules.

B. Smart Insole

Our wearable sensor embedded device is shown in Fig. 2
(left), Smart Insole Device. It has a similar hardware design
to its previous version [20]. This insole integrates an IMU
(i.e., a tri-axis gyroscope, a tri-axis accelerometer, and a tri-
axis magnetometer) and a 16 pressure sensors array for data
sensing. Specifically, IMU provides geometry features of gait
and the pressure sensors array detects the plantar pressure
distribution in walking which both significantly reflects gait
abnormalities of an individual [21], [22]. Moreover, while the
IMU is the most widely deployed sensor in gait analysis, the
pressure sensors array can promote accuracy and efficiency in

some aspects of gait analysis. For example, it can directly
detect any foot-ground contacts (e.g., heel and toe strikes)
because the pressure abruptly increases at the related plantar
areas, while the IMU based method indirectly indicates the
contacts relying on the foot orientation information [23]. Be-
sides from the data sensing accomplished by the two sensors,
data acquisition is through the use of a 16 to 1 channel MUX
and a Microcontroller Unit; data transferring is achieved via
a Bluetooth Low Energy module. The insole also contains a
battery module which is charged through USB connection. All
the aforementioned components except the pressure sensors
array are placed in a 40mm by 40mm printed circuit board.

C. Smartphone Application

We designed the smartphone application by prioritizing
ease-of-operation considering most users are older adults
who may have less experience with smartphone softwares
compared to other age groups. The application connects the
Smart Insole through Bluetooth so that users can choose when
to collect data by simply clicking a button. The design of
the smartphone application’s graphical user interface (GUI) is

TABLE I
DESCRIPTIONS AND METHODOLOGIES OF PRESSURE FEATURES

Features Methodology
Forefoot Average Pressure The mean of 1th − 10th pressure sensors’ values.
Rearfoot Average Pressure The mean of 11th − 16th pressure sensors’ values.
Sole Average Pressure The mean of all pressure sensors’ values.

(Fig. 3 (left) shows positions of 1th − 16th pressure sensors in the insole.)

Center of Pressure (COP) Location Pi: the value of ith pressure sensor.
n = 16: the total amount of pressure sensors.
(Xi, Yi): coordinate values of the ith pressure sensor.
(Xcop, Ycop): the position of COP on the sole.
Xcop = (

∑n

i
XiPi)/(

∑n

i
Pi)

Ycop = (
∑n

i
YiPi)/(

∑n

i
Pi)

Center of Pressure Velocity (Vcop) Xdist, Ydist: COP travel distances on X-, Y-axes
in a time interval 4t.

Xdist = |Xcop(t+4t)−Xcop(t)|
Ydist = |Ycop(t+4t)− Ycop(t)|
Vcop: the speed of COP location movements

in a time interval 4t.
Vcop = (1)/(4t) ∗

√
(Xdist)2 + (Ydist)2
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TABLE II
DESCRIPTIONS AND METHODOLOGIES OF SPATIAL-TEMPORAL FEATURES

Features Description Methodology
0. Threshold (THR) 10% of the participant’s sole avg. pressure in a natural standing posture. Each participant stands for 10 seconds before the TUG process for finalizing THR.
1. Forefoot Contact Time A period of forefoot in contact with the ground in a gait cycle. The covered time of a collected time stamp set with the forefoot avg. pressure ≥ THR.
2. Rearfoot Contact Time A period of rearfoot in contact with the ground in a gait cycle. The covered time of a collected time stamp set with the rearfoot avg. pressure ≥ THR.
3. Full Contact Time A period of entire foot in contact with the ground in a gait cycle. The covered time of the intersection of time stamp sets collected from 1 and 2.
4. Foot-ground Contact Time A period of foot in contact with the ground in a gait cycle. The covered time of the union of time stamp sets collected from 1 and 2.
5. Non Foot-ground Contact Time A period of foot completely in the air in a gait cycle. The covered time of a collected time stamp set with every sensor’s value < THR.
6. Initial Contact Moment The start of a latter gait cycle and the end of a former gait cycle. The first time stamp within the union (aforementioned in 4).
7. Gait Cycle Time The duration of a gait cycle. The duration between two consecutive initial contact moments of one foot.
8. TUG Time The duration of a TUG. The time difference between the start and the end of TUG (see in Section. IV-D).
9. Gait Cycle Count The number of performed gait cycles in a TUG. The number of appeared non foot-ground contacts.
10. Gait Cycle Pace The gait cycle count in one minute (60 seconds). Gait cycle count divided by TUG time in seconds, and then times 60.
11. Stride Length The horizontal displacement of a foot made in a gait cycle. The algorithm is described in the second paragraph of Sec. IV-C and Fig. 5.

shown in Fig. 2 (middle). Our software automatically transfers
data from the insole to the cloud service module for the
data pre-processing and the TUG analysis via Wi-Fi or LTE.
Moreover, a testee’s physical information and test reports can
be viewed inside the application. A sample of test report is
presented in Fig. 2 (middle).

D. Cloud Service Module

The cloud service module is the core part in our system
design. It has two main missions, the data pre-processing
for limiting noises, drifts, biases and the TUG analysis for
providing rich, robust, real-time test results. The former in-
cludes: (1) denoising pressure values; (2) calibrating, filtering
accelerometer and gyroscope data; and (3) initializing the
baseline with magnetometer data [20]. The latter contains two
analyses, gait feature extraction and TUG phase recognition.
Three types of gait feature are extracted and five TUG phases
are recognized, leading to an in-depth TUG gait analysis. In
addition, the cloud service module includes a database function
for storing test histories and user information. The structure
of this module is presented in Fig. 2 (right) and all related
methodologies are described in Section. IV.

IV. COMPETENT TUG ANALYSIS

A. Gait Feature Extraction: Pressure Feature

All pressure features (see Table I) are derived from values
given by a 16 pressure sensors array. Each pressure sensor is
built based on a cutting-edge sensor technique, named electri-
cal textile. The textile is coated with conductive polymer and
air gapped at its inner structure. The initial resistance of textile
is high and will decrease if its intra is squeezed by an applied
force on the textile surface. Meanwhile, the output voltage,
which can be transformed into pressure value, will increase. As
shown in Table I, SITUG provides average pressures, center
of pressure (COP) location, and COP velocity. While COP
based parameters are reliable measures of balance control [24],
average pressure values in different plantar areas are essential
for spatial-temporal feature extractions (see Section IV-C).

B. Gait Feature Extraction: Spatial Feature

Spatial features including pitch, roll, and yaw angles can
be described as rotational angles around x-, y-, and z-axes of

Fig. 3. The position of a 16 pressure sensors array in the insole (left). Roll,
pitch, and yaw angles can be described as rotational angles around x-, y-, and
z-axes of the insole in a world frame (right).

the insole in a world frame as shown in Fig. 3 (right). Intro-
duced by Janota et al. [25], the quaternion-based algorithm
is superior compared to anther two widely used methods, the
rotational matrix transformation and the rotational angle rate
integration, due to its efficiency and accuracy. A fast version of
quaternion-based algorithm for deriving these angles are used
in SITUG since it achieves the same accuracy as the precise
version under a 100 Hz sampling frequency [25], which is also
the default sampling rate of Smart Insole.

Spatial features define the orientation of feet which plays
an essential role in stride length calculation and TUG phase
recognition. Additionally, the normality of gait can be assessed
by checking patterns of three rotational angles, because a
healthy subject usually performs similar pitch, roll, and yaw
angle patterns during gait. The red colored graph in Fig. 4 is
the pitch angular velocity trend of a healthy subject extracted
by SITUG during a gait cycle.

C. Gait Feature Extraction: Spatial-temporal Feature

All foot-ground contact related spatial-temporal features
are determined by different average pressures (see Table II.
1 ∼ 6). During a foot-ground contact, solid forces are
applied onto the ground such that sensors’ inner structures
are squeezed, producing noticeable pressure values. Fig. 4
presents the forefoot and the rearfoot average pressure trends
corresponding to different foot-ground contacts in a normal
gait cycle. Insoles may sense minor pressures without any
foot-ground contact since they still contact with feet and shoes.
Therefore, a threshold (THR) of the forefoot, the rearfoot, and
the sole average pressures is used for determining foot-ground
contact related spatial-temporal features. Instructed by SITUG,
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each subject stands for 10 seconds before the TUG process for
finalizing THR (see Table II. 0), which is 10% of the subject’s
sole average pressure in a natural standing position.

The algorithm of stride length estimation, inspired by
Laudanski et al. [26], uses processed data with drift and
bias controls as mentioned in Section III-D. Firstly, X-, Y-
, and Z-axis linear accelerations from one sample intake are
converted into an overall horizontal acceleration in the world
frame using spatial features and trigonometric functions (see
Fig. 5). A series of horizontal accelerations is then integrated
into instantaneous horizontal velocities. In [26], an initial
horizontal velocity of foot is added at the end of integration.
However, SITUG considers the initial horizontal velocity as
zero, since the algorithm is applied starting from a full contact
in each gait cycle such that the foot is temporally stationary
on the ground. Finally, we integrate the derived instantaneous
velocities obtaining the horizontal displacement in each gait
cycle, which is the stride length.

D. TUG Phase Recognition

Further information including the time taken to turn, which
is highly useful in fall risk measurement [7], can be derived
by the TUG phase recognition. Five consecutive TUG phases
including lifting (rising from a chair), first walk (walk to
the turning point), turning (turn at the point), second walk
(walk back to the chair), and lowering (sitting back down) are
indicated by six important time stamps. The methodologies
of locating these time stamps are described as follows:

1) Start of TUG: This time stamp is also the indicator of
lifting phase. The plantar pressure increases since the start of

Fig. 4. Blue solid/dashed graph: The forefoot/rearfoot average pressure trend
of a healthy subject extracted by SITUG during a gait cycle. Red solid graph:
The pitch angular velocity of the subject in the gait cycle. Spatial-temporal
features including forefoot contact, rearfoot contact, full contact, foot-ground
contact, and foot-ground non-contact times are marked regarding the average
pressure trends. All these features and their relationships with the average
pressures are described in Table II

Fig. 5. In the world frame, an overall horizontal acceleration (green vector)
is a combination of three horizontal accelerations (orange, cyan, and purple
vectors), which are converted from blue projections of X-, Y-, and Z-axis linear
accelerations (red vectors). Each projection is derived using spatial features
(pitch, roll, yaw angles) and trigonometric functions.

TUG, the moment of starting to press feet onto the ground and
trying to get up from the chair. The same THR (see Table II.
0) is used for determining the start of TUG as insoles sense
minor plantar pressures while the subject is sitting with the
feet on ground (a ready posture of TUG). For the first time, if
both feet’s sole average pressures exceed THR, then the start
of TUG is stamped.

2) Start of First Walk: It’s inevitable that each individual
needs to lift a foot from the ground in order to step forward.
While the foot is in non foot-ground contact time, the insole
senses only minor pressures. Thus, for the first time when a
sole average pressure of either left or right foot suddenly drops
below the aforementioned THR (see Table II. 0), the start of
first walk is located.

3) Start of Turning: The yaw angle difference D is equal
to |(φ)latter − (φ)former|, where (φ)latter represents a yaw
angle upon a latter full contact and (φ)former is the one upon
a former full contact. In [27], D is defined as the turning angle
such that an individual is in turning period when D > 20◦.
Their experimental walking procedure involves a smooth turn
which won’t produce sharp changes in D. In the setting of
TUG, a sharp full turn is required leading to abrupt changes
in D. Therefore, we empirically increase the threshold to 75◦

for distinguishing the full turn from other mild, smooth turns
occurring in Bypass TUG (see Section II-C). The start of
turning is the start of D ≥ 75◦, which must be consecutively
satisfied by both feet.

4) Start of Second Walk: This time stamp is the first
initial contact moment (defined in Table II. 6), which is the
start of a gait cycle occurs immediately after the end of the
turning phase such that the 75 degrees requirement is no longer
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consecutively satisfied by both feet.
5) Start of Lowering: When the sitting down process

begins, each individual tends to fix both feet on the ground
and shift the body weight backward putting more pressures
on heels. Thus, after the start of second walk, the start of
lowering can be determined if the following three conditions
are satisfied, (1) both feet’s x-axis linear accelerations stay
near zero, (2) the derivative of forefoot average pressure is
negative, and (3) the derivative of rearfoot average pressure is
positive.

6) End of TUG: This time stamp is also the end of
lowering phase such that the subject is back to a natural sitting
posture after the TUG process. Behind the start of lowering, if
both feet’s sole average pressures drop and stay less than the
aforementioned THR in Section IV-D1, the TUG has ended.

V. EVALUATION

A. Experimental Setup

Ten participants (age: 19− 44; weight: 50− 85 kg; height:
160−186 cm; body mass index: 18.4−27.1; shoe size: 37−44
in European standard; all have normal mobility; five females.)
volunteered for this experiment. Each participant completed a
series of four environment-adapting TUGs; the used obstacles
are all in the size of 42.2cm(L)× 25.4cm(W )× 18.8cm(H).
The data set was collected by the Smart Insole placed in the
participant’s shoes with 100 Hz as the sampling frequency
and 12-bit as the resolution. Video filming was used with
the purpose of setting ground truth references. We aimed at
validating the feasibility of SITUG in monitoring movements
within four environment-adapting TUGs designed to examine
an individual’s gait adaptability eliciting further information
for fall risk assessment (see Section II-C).

B. Quantified Study

This study verifies the accuracy of spatial-temporal features
and TUG phase recognition proofing the feasibility of SITUG.
A corresponding equation of accuracy (ACC) is presented
below:

ACC = (1− |Vm − Vt|
Vt

)× 100%, (1)

where Vm and Vt stand for the measured and the true values. In
order to show the dispersion of calculated accuracies, standard
deviations (SD) are also computed as follow:

SD =

√√√√ 1

N
×

N∑
i=1

(xi − µ)2, (2)

where N is the amount of involved values, xi is each individ-
ual value, µ is the mean of all involved values. In statistics,
it’s well known that 68.3%, 95.5%, 99.7% of involved values
lie within the range of µ± SD, µ± 2SD, µ± 3SD.

1) Contact Related Features: Multiple gait cycles are
involved in a TUG. Therefore, for each TUG, mean fore-
foot, rearfoot, full, non foot-ground contact, and gait cycle
times are computed. Comparing the computed mean times
from SITUG’s results and video observations, we obtain each
contact related feature’s accuracy in a TUG. For each type

Fig. 6. Experimental results for stride length. Each circle is a calculated
accuracy of walking distance of a TUG. The red dashed line indicates the
mean of all accuracies. Four colors are used to distinguish types of TUG.

of TUG, ten accuracies of each contact related feature are
calculated since each of ten subjects performs all types of
environment-adapting TUG. The mean and the SD of every
ten accuracies are presented in Table III. To clarify, validation
results of gait cycle time assess SITUG’s ability in locating ini-
tial contact moments, which directly determines the gait cycle
time as described in Table II. 7. Additionally, the correctness
of extracted foot-ground contacts is already verified by the
presented accuracies as forefoot, rearfoot, and full contacts
are components of the foot-ground contact. According to the
experimental results, SITUG achieves decent accuracies in all
contact related features. We believe that this is due to the virtue
of pressure sensors array as foot-ground contacts directly and
significantly change the pressure of related plantar areas.

2) Gait Cycle Count and Stride Length: SITUG is reliable
in counting gait cycles. In all performed TUGs, all accuracies
of gait cycle count achieve 100%.

To access SITUG’s capability in stride length estimation, we
first derive the walking distance (WD) based on the estimated
stride lengths. The equation of WD is given below:

WD =
Sleft + Sright

2
, (3)

where Sleft (Sright) is the sum of left (right) foot’s all stride
lengths performed in a TUG. The reference WD of extended,
incline, and overpass TUGs is 14 meters. For bypass TUG,
the reference WD is 15.5 meters. Comparing an estimated
WD and the corresponding reference, an accuracy of stride
length in each performed TUG is obtained. Fig. 6 shows
our experimental results. The mean accuracy of stride length
derived from WD validation is 93.06% (marked by a red
dashed line in the figure).

TABLE III
EXPERIMENTAL RESULTS OF CONTACT RELATED FEATURES

Feature Extended TUG Incline TUG Bypass TUG Overpass TUG
ACC(%): Mean±SD ACC(%): Mean±SD ACC(%): Mean±SD ACC(%): Mean±SD

Forefoot Contact Time 94.23± 2.38 95.33± 2.81 92.95± 2.39 92.84± 2.47
Rearfoot Contact Time 94.17± 2.01 93.74± 2.12 93.80± 2.48 93.12± 2.50

Full Contact Time 93.62± 1.99 93.88± 2.22 94.37± 2.55 92.23± 2.07
Non Foot-ground Contact Time 94.34± 2.11 95.01± 2.63 93.87± 1.96 93.22± 1.88

Gait Cycle Time 94.81± 2.77 94.28± 2.34 94.60± 2.46 93.92± 2.08
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Fig. 7. Experimental results for TUG phase recognition. Each colored
segment inside a column represents an average value of all duration of the
corresponding TUG phase created by ten subjects. White dotted columns are
computed results from SITUG while normal colored ones are reference values
from video observations.

We notice that the accuracy of stride length in incline TUG
is always lower than the results of other environmental TUGs.
This can be caused by the fixed world frame setting in SITUG.
According to our current experimental setup, the world frame
is initialized on the flat ground since it is defined at the start
of each test. Therefore, when an individual is walking on an
incline, the fixed world frame cannot finely match with the
reality; the level of incompatibility is related to the degree
of incline. Considering the advantages (e.g., data consistency
and computing efficiency) of having a fixed world frame, one
feasible solution is to start the incline TUG on the slope instead
of the flat ground.

3) TUG Phase Recognition: For a phase in a type of
TUGs, an average duration is taken from ten participants’
phase durations recorded by SITUG or video filming. To assess
the correctness of recognizing TUG phases, we check the
inferred average duration of each phase in four different TUGs
with reference values derived from video observations (see
Fig. 7). Five mean accuracies are calculated for five extracted
average TUG phase durations of all types of TUG, which are
95.38%, 93.80%, 83.44%, 94.40%, and 94.13%.

According to the experimental results, SITUG is more
accurate in locating other TUG phases instead of the turning.
Turns performed by different individuals can be greatly varied.
Therefore, unlike other important time stamps (see Section
IV-D), it is much difficult to define a standard start of turning
from visualization (i.e., video filming) leading to deviations in
turning phase recognition. The problem can be mitigated by
informing participants a unified way of turning.

VI. CONCLUSION AND DISCUSSION

Due to the existing drawbacks in TUG, we propose the
Smart Insole TUG (SITUG) designed for extracting rich and
fine features in the environment-adapting TUGs, which ad-
vances current clinical standards for identifying individuals at
risk for falling. SITUG consists of a sensor-equipped wearable
device, a user-friendly smartphone application, and a well-
considered cloud service module. It offers comprehensive gait

feature extractions and distinguishes five detailed TUG phases,
providing fine-grained information for fall risk estimation.
According to the experimental results, SITUG can educe
all contact related spatial-temporal features with all mean
accuracies above 92% and recognize all TUG phases with
a mean accuracy 92.23%. It is also competent in counting
gait cycles achieving a 100% accuracy for all environmental-
adapting TUGs. Moreover, it can estimate the walking distance
with a mean accuracy 93.06% for verifying the stride length.

In the future, we plan to deploy a more rigorous version
of experiment. First, we will evaluate the system in an older
population. Secondly, we hope to validate SITUG using state-
of-the-art equipments such as a motion capture camera system
and a force platform. Afterwards, we believe that our system
can be evolved to a next level of usability and reliability based
on a finer experimental feedback.
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