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Abstract
Continuous authentication is of great importance to main-

tain the security level of a system throughout the login ses-
sion. The goal of this work is to investigate a trustworthy,
continuous, and non-contact user authentication approach
based on heart-related biometric that works in a daily-life
environment. To this end, we present a novel continuous
authentication system, namely Cardiac Scan, based on ge-
ometric and non-volitional features of the cardiac motion.
Cardiac motion is an automatic heart deformation caused by
self-excitement of the cardiac muscle, which is unique to
each user and is difficult (if not impossible) to counterfeit.
Cardiac Scan features intrinsic liveness detection, unobtru-
siveness, cost-effectiveness, and high usability. We proto-
type a remote, high-resolution cardiac motion sensing sys-
tem based on the smart DC-coupled continuous-wave radar.
Fiducial-based invariant identity descriptors of cardiac mo-
tion are extracted after the radar signal demodulation. We
conduct a pilot study with 78 subjects to evaluate Cardiac
Scan in accuracy, authentication time, permanence, usabil-
ity in complex conditions, and vulnerability. With four car-
diac cycles for recognition, Cardiac Scan achieves 98.61%
balanced accuracy (BAC) and 4.42% equal error rate (EER).
All these studies demonstrate that Cardiac Scan is a robust
and usable continuous authentication system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-

neous; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures
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1 Introduction
Continuous authentication provides potential solutions to

improve the vulnerable one-pass validation by continuously
verifying the user’s identity during session use, even long af-
ter the initial verification. Ultimately, it can guarantee the
system is operated by the same user who is initially autho-
rized to log into the system. For example, it can prevent
malicious adversaries from accessing the system when the
legitimate user is away or overwhelmed. Recently, there are
increasing demands on more secure user authentication for
both government and private companies [16, 17]. Consider-
ing the increasing incidences of compromise and disclosure
of authentication credentials due to the weakness of cryp-
tographic mechanisms (hacking, password theft, etc.) and
carelessness of authentic users. In 2014 alone, more than
one billion personal records are illegally accessed includ-
ing, but not limited to, health, financial, email and home ad-
dress data, and other personal information like social security
numbers [83].

Existing solutions for continuous authentication have cer-
tain limitations. Specifically, traditional methods demand the
user to intentionally engage with the authentication system,
such as scan a fingerprint or key in a password every a certain
period. Regardless of the vulnerability, these methods hurt
the usability in practice. Several studies also have proposed
advanced continuous authentication mechanisms based on
the user’s behavioral biometrics, such as keystroke dynam-
ics and gaze pattern. However, keystroke dynamics [62, 72]
requires the user to keep typing on the keyboard, while gaze
patterns [25, 54] requires the user to face and continuously
look at the screen. Other methods, such as continuous face
recognition [11] on Windows 10 Hello [22], are also reported
to be vulnerable to spoofing or replay attacks [4]. Recently,
the physiological biometrics-based approaches are emerging
for continuous authentication, such as pulse response [66].
However, they all require human body make contact with
certain devices.

As a live individual trait, heart-based biometric is unique
(i.e., distinguishable across subjects), measurable (i.e., hard
to hide), non-volitional (i.e., unknown to the user), secure
(i.e., difficult to counterfeit), and present in all living indi-
viduals (i.e., intrinsic liveness). Different from electrocar-
diogram (ECG) [69], we explore the cardiac motion, which



is a heart-based functional behavior determined by the in-
trinsic geometric structure of the heart. We aim to develop
a cardiac-motion-based continuous authentication scheme in
a non-contact way. Specifically, there are three challenges
involved: 1) how to obtain the high-resolution cardiac mo-
tion information unobtrusively? 2) how to extract invariant
geometric-based features for each heart with regard to the
cardiac motion mechanism? 3) how to examine the usability
and security of the continuous authentication scheme?

To this end, we propose Cardiac Scan, a secure and
trustworthy continuous user authentication scheme via non-
contact cardiac motion sensing. Fig. 1 shows the work-
ing paradigm of transformative Cardiac Scan. The authentic
user’s credential is stored in the database prior to authenti-
cation, a new incoming cardiac motion will be matched to
the stored credential to make the decision as to whether the
access request is from an authorized user or a malicious ad-
versary. Specifically, our work focuses on: 1) developing a
smart DC-couple continuous-wave (CW) Doppler radar sen-
sor to continuously capture the high-resolution cardiac mo-
tion information from the distance; 2) identifying fiducial
descriptors of cardiac motion based on the heart geometric
characteristics; 3) conducting intensive evaluations (e.g., ac-
curacy performance, usability and complex use conditions)
to validate its performance and examine its security against
replay attacks. Through a pilot study with 78 subjects, Car-
diac Scan achieves 98.61% balanced accuracy (BAC) and
4.42% equal error rate (EER). All these studies demonstrate
that Cardiac Scan is a robust and usable continuous authenti-
cation system. Moreover, Cardiac Scan can be conveniently
integrated with existing one-pass user verification techniques
(e.g., personal identification number [PIN], fingerprint, iris
scan, and face) to enhance the continuous authentication ca-
pability of existing systems.

In sum, the contribution of this work is two-fold:
1) We explore new cardiac motion-based biometrics for
continuous user authentication. Cardiac Scan exploits the
unique and non-volitional components of individual cardiac
motion and identifies users in a non-contact, unobtrusive and
secure manner. This approach holds the potential to trans-
form existing authentication systems into a more undeceiv-
able, disclosure-resistant and user-friendly solution.
2) We evaluate Cardiac Scan through a set of multi-scene
evaluations, including authentication with unaligned sensors,
authentication with different emotional states, authentication
in motion, and authentication under replay attack.

Figure 1. A novel continuous authentication method us-
ing cardiac motion captured by the non-contact radar.

2 Design Considerations
2.1 Design Goals

A successful biometric system should possess some nec-
essary properties. When designing our Cardiac Scan system,
we have taken into account the following properties.
Intrinsic Liveness: An essential requirement for a biometric
system is intrinsic liveness detection, i.e., it should be able to
distinguish if the authentication sample is a real “live” user
or a replay attack. Some biometric systems, such as face
recognition, can be easily fooled by a replay. Cardiac motion
exists only in a “live” user and represents heart deformation
when the heart is in contraction and relaxation states.
Unobtrusive Authentication: The authentication system
should identify an authentic user in an unobtrusive way so
that the user has no obligation to change his/her behavior to
adapt to the system. Continuous authentication further re-
quires the authentication process to be unobtrusive so that
the user does not need to interrupt current work to authenti-
cate. Cardiac Scan can perform unobtrusive and continuous
authentication through a human-safe radio signal.
Highly Secure: The biometrics for authentication should be
highly secure and unique, making it difficult to be forged
and steal. Cardiac scan measures the live cardiac motion,
which depends on the cardiac muscle structure of the user,
and therefore is impossible to completely mimic.
Cost-effective and Easy-to-Use:Some biometrics seem to
have reliable and robust features, but the information acquisi-
tion requires expensive devices and specific conditions, such
as an iris/retina authentication system. Cardiac Scan uses
low-cost off-the-shelf components to build the radar sensor
and is easy to use at a distance because of the propagation of
the radio signal.
Resilient to Background Noise and Use Conditions:The
biometric system should also be resilient to background
noise and use conditions, no matter what the surrounding
environmental conditions are. Camera-based authentication
systems, including face and iris recognition, usually have de-
teriorated performance with either too strong or too weak il-
luminations. Cardiac scan uses a radio signal that is robust
to the environmental change, and can penetrate through ob-
stacles to accurately sense the cardiac movement.
2.2 Non-contact Cardiac Motion Sensing
2.2.1 Rationale

This work investigates cardiac motion as a new biometric
to secure user authentication. Cardiac motion is a 3D auto-
matic heart deformation caused by the self-excitement of the
cardiac muscle [29]. As shown in Fig. 2(a), the human heart
contains two upper cavities (atria) and two bottom chambers
(ventricles) [35]. The successive contraction and relaxation
of both atria and ventricles circulate the oxygen-rich blood
throughout the human body. The contraction and relaxation
comprise the cardiac motion. In a cardiac cycle, ventricles
relax and passively fill with approximately 70% of their to-
tal volume. Then atria expand to extract and pump blood.
Meanwhile, ventricles continuously fill with the remaining
20% 1. After that, ventricles start to contract with heart
muscles, and the blood volume remains unchanged. When

1Ventricles at least free up 10% of the volume for contraction.



inside pressure reaches a certain threshold between ventri-
cles and atria, blood is ejected and the heart volume reduces
rapidly [10].

(a) Heart structure. (b) Cardiac motion stages.

Figure 2. Heart structure and dynamics.
As shown in Fig. 2(b), one cardiac motion cycle consists

of five distinct stages including: 1) ventricular filling (VF),
2) atrial systole (AS), 3) isovolumetric ventricular contrac-
tion (IC), 4) ventricular ejection (VE), and 5) isovolumetric
ventricular relaxation (IR) [10]. These cycle stages are sig-
nificantly different in volumes, surface shape, moving dy-
namics (speed, acceleration, etc.) and 3D deformation of
the heart [14]. These stages vary from person to person due
to the change in size, position, anatomy of the heart, chest
configuration and various other factors [44]. No two per-
sons have exactly the same heart, blood circulation system
and other related tissues. Therefore, the cardiac motion is a
unique identity marker for each individual [29]. Moreover,
since cardiac motion is intrinsically connected to multiple bi-
ological functions, it is extremely difficult to counterfeit or
to be hidden for a living individual.
2.2.2 Feasibility

Non-contact monitoring of human body motion, such as
respiration and heartbeat rates using a Doppler radar motion
sensor, has gone through a few decades of scientific study
[18, 23, 42, 48, 49]. Efforts have been devoted to the devel-
opment of radar front-end hardware, signal processing algo-
rithms, and system on-chip/on-board integration. Compared
with other techniques such as non-contact laser vibrome-
ter [71] and infrared imager [53] that can only detect motion
at body surface, it has been shown that the Doppler radar sen-
sor can directly measure the motion of internal organs [61]
and heart [67, 90]. However, research results in those work
are incomprehensive for a real authentication system, e.g.,
the impact of random body movement is not considered. Al-
though random body movement and clutter noise still re-
quire significant efforts to resolve, some progress has been
achieved [41, 80] and preliminary clinical studies have been
reported [37]. However, they still have limitations. Can-
cellation approach in the work [41] relies on the baseband
signals. It fails to work when signals at baseband output are
clipped due to circuit saturation, which is likely to happen
in the presence of large body movement. In Wang et. al’s
method [80], users have to either sweep the radar’s carrier
frequency or adjust the subject’s position in order to estab-
lish a specific cancellation condition, which is inconvenient
in use. Because of the sensitivity required for detection along
with difficulty in maintaining the original motion pattern dur-
ing demodulation, most research using biomedical radar sen-
sors have focused on detecting the rate of heartbeat [49]. Re-

cently, some of our research results have proved that DC-
coupled interferometry radar and Doppler radar with digital-
IF architecture can avoid frequency-selective signal distor-
tion and thus make it possible to recover accurate motion
patterns using continuous-wave (CW) Doppler radar sensors.

3 Cardiac Motion Sensing System Prototype
3.1 System Overview

By measuring the signal phase shift caused by physiolog-
ical motion, biomedical radar can reveal heartbeat and respi-
ration information. Compared with conventional biomedical
radars that can only measure the rate of the heartbeat signal,
the main novelty of the radar sensor developed in this work
is using distortion-free front-end architecture and demodula-
tion to measure cardiac motion pattern. A smart DC-coupled
radar architecture was employed in the radar front-end to
eliminate undesired DC offset and preserve the desired car-
diac motion characteristic information.

3.2 Smart Front-end Architecture with Dy-
namic DC Tuning

To monitor cardiac motion pattern, a smart DC-coupled
CW radar sensor was employed by taking advantage of real-
time signal processing and mixed-signal design in modern
devices. For cardiac motion sensing, the DC offset due to re-
flection from other parts of the body not related to cardiopul-
monary activities may easily saturate the receiver and create
frequency-dependent distortion, and is an important factor
for the central intelligence unit to handle. Details of hard-
ware innovation are discussed below.
3.2.1 Smart DC tuning

As shown in Fig. 3, the DC-coupled adaptive tuning archi-
tecture includes RF coarse-tuning and baseband fine-tuning.
For RF tuning, the electronically controlled phase shifter and
attenuator add a portion of the transmitted signal to the re-
ceiver signal to cancel most of the DC offset caused by clut-
ter reflections. However, due to quadrature imbalance, the
phase variation of the received signals, and the limited res-
olution of the phase shifter and the attenuator, the RF tun-
ing cannot completely remove all the DC offsets. To further
eliminate the remaining DC offsets, a baseband fine-tuning
block was implemented to dynamically adjust the amplifier
bias to the desired level that allows the maximum dynamic
range. With the above DC tuning realized by a smart cen-
ter in real time, the radar sensor will precisely measure car-
diac motion pattern. The integration of the DC-tuning tech-
nique into portable devices will be addressed with the help of
logic control circuits coordinated by the I2C bus and CMOS-
integrated calibration DACs.
3.2.2 Optimal carrier frequency

Besides manipulating the penetration depth, radar carrier
frequency also determines the modulation sensitivity. Ex-
periments were first carried out to compare the performance
of carrier frequencies ranging from 2.4 GHz to 40 GHz.
It should be noted that increasing the carrier frequency be-
yond 40 GHz may not help because as the wavelength ap-
proaches physiological motion amplitude, strong nonlinear
phase modulation will generate harmonic interference [39] .
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Figure 3. Doppler radar sensor with adaptive DC tuning
and beam control.

3.2.3 Electronic beam control
In this work, cardiac sensing will be realized from dif-

ferent angles to obtain sufficient information for biometrics
applications. Also, multiple radars around a subject may
“probe” cardiac signals simultaneously. To achieve this, it
is essential that a radar can configure the radiation beam to
precisely point at the location of interest. As shown in Fig.
3, digital beam control was implemented on the radar front-
end. Conventional beamforming systems directly adjust the
phase and amplitude of the signal of each element antenna.
We demonstrated that it is much more convenient to simul-
taneously adjust the phase and amplitude in the complex do-
main than to adjust them separately. For a complex signal
x = exp(− j2π f t) sent into each element antenna (where f is
the signal frequency), a vector multiplier was used to realize
phase and amplitude modulation by first splitting the signal
into in-phase and out-of-phase components and then by mul-
tiplying each one using a variable gain amplifier. Finally, by
adding the amplified in-phase and out-of-phase components
together, complex modulation to the original signal can be
achieved, thus effectively realizing radar beam control. To
align the radar beam with the user, a laser pointer can be
used to indicate the beam direction.

4 Radio Signal Processing Schemes
4.1 Scheme Overview

In this section, we elaborate on the radio signal process-
ing schemes and correspondingly investigate user authenti-
cation methods to achieve secure and usable authentication
results. As depicted in Fig. 4, our proposed approach mainly
comprises three modules. First, the original sequential sig-
nal was preprocessed for noise reduction. Second, we per-
formed de-noising aware radar signal demodulation. Third,
we extracted fiducial-based descriptors using heart geome-
try features. Lastly, we obtained authentication results. Note
that the existing heart-based biometrics, such as ECG, are
recording the electrical activity of the heart, whose descrip-
tors are extracted on the basis of the QRS complex [12]. As
a new biometric modality, our non-contact cardiac motion is
substantially different from the typical ECG signal in that it
is a direct heart motion activity measured by an RF sensor.
Therefore, it is crucial to explore new approaches in biomet-
ric authentication for non-contact cardiac motion. To the best
of our knowledge, no such work exists in the literature.

4.2 Pre-processing
The purpose of pre-processing is to reduce the noise

level in the cardiac signal and simultaneously prevent the
waveform from distortion. The noise includes low-band
components (e.g., baseline wander), high-band components
(e.g, power-line interference) and unpredictable-band com-
ponents (e.g., arbitrary motion in the scene). Considering di-
verse and known frequency bands of the noise spectrum, we
have addressed the noise level reduction in two areas: 1) one-
pass noise reduction techniques (e.g., a Butterworth band-
pass filter) and 2) adaptive noise canceling techniques [84]
(e.g., a normalized least mean square adaptive filter [85]).
These techniques have also been successfully applied in bio-
artifact reduction [21, 85].

4.3 De-noising-Aware Radar Demodulation
A novel signal demodulation procedure is critical for

distortion-free cardiac motion sensing because traditional
Doppler radar is optimized for speed detection, which faces
challenges when the movement pattern has very low fre-
quency or stationary components.

4.3.1 Challenges in signal demodulation
The Doppler radar sensor transmits the continuous-wave

signal T (t):

T (t) = AT cos(ωt +φ(t)). (1)

Then, the transmission wave is received as R(t):

R(t) = AR cos[ωt− 4πd0

λ
− 4πx(t)

λ
+φ(t− 2d0

c
)], (2)

where A is the amplitude. ω represents the angular velocity.
φ(t) is the time-varying phase. λ is the wavelength. c is the
speed of light. d0 is the distance between the Doppler radar
and the subject. x(t) denotes the time-varying displacement
caused by cardiac motion. The R(t) then generates two base-
band signals, including I(t) and Q(t). I(t) is the in-phase
signal:

I(t) = AI cos[
4πx(t)

λ
+

4πd0

λ
−φ(t− 2d0

c
)]+DCI , (3)

Q(t) is the quadrature signal:

Q(t) = AQ sin[
4πx(t)

λ
+

4πd0

λ
−φ(t− 2d0

c
)+φ0)]+DCQ,

(4)
where AI is the amplitude of the in-phase signal. AQ is the
amplitude of the quadrature signal. φ0 is the phase offset
between I(t) and Q(t). DCI and DCQ are the DC offsets in
I/Q channels, respectively. The NI USB-6008 samples the
baseband radar signals, I(t) and Q(t), at 100 Hz.

In our work, for simplicity, we neglect the constant phase
offset, 4πd0/λ+ φ(t−2d0/c), in Eq. (3) and Eq. (4). We
assume that the gain imbalance is 1 (the ratio of AI and AQ
is 1), and phase imbalance (φ0) is 0. Therefore, Eq. (3) and
Eq. (4) can be described as:{

I(t) = A0cos( 4πx(t)
λ

)+DCI

Q(t) = A0sin( 4πx(t)
λ

)+DCQ
. (5)



Figure 4. The flowchart of Cardiac Scan, a heart-biometric-based continuous user authentication system.

According to trigonometric identities, Eq. (5) can be trans-
formed into

(
I(t)−DCI

A0
)2 +(

Q(t)−DCQ

A0
)2 = 1. (6)

Therefore, the samples of I/Q channels stay on a circle whose
center is (DCI ,DCQ) with a radius of A0.

The least squares optimization [87], then, is employed to
obtain the circle and identify the three unknown parameters:
DCI , DCQ, and A0.

After identifying the DC component offsets, the displace-
ment signal x(t) can be derived using the arctangent demod-
ulation method to solve the function in Eq. (7).

x(t) = arctan(
Q(t)−DCQ

I(t)−DCI
)× 4π

λ
. (7)

Traditionally, to detect the ‘weak’ physiological signal
x(t), the small-angle approach was used [23, 41, 42, 48],
which suffers from two inherent problems. First, when the
distance between the target and the radar sensor changes,
the detection sensitivity will also change, resulting in alter-
nating ‘optimum’ and ‘null’ points [23]. Second, nonlin-
ear harmonics and intermodulation products would appear
when movement amplitudes are comparable to the carrier
wavelength [38]. To solve the above difficulties, an arct-
angent demodulation approach was proposed by calculating
arctan[Q(t)

I(t) ], assuming DCI and DCQ can be properly cali-
brated [60]. Unfortunately, a direct arctangent function has
a co-domain range of (−π

2 ,
π

2 ). Once the demodulation ex-
ceeds this range, phase unwrapping is required, which is
challenging in practical detection when noise is strong and
the movement amplitude is large [31]. This is especially a
problem when random body motion exists, which introduces
a significant phase change that could easily go beyond mul-
tiples of 2π.
4.3.2 Phase demodulation solution

To overcome the limit of arctangent demodulation,
we have investigated an extended differentiate and cross-
multiply (DACM) algorithm to avoid the phase unwrap-
ping problem. The algorithm computes a derivative to the
arctangent-demodulated phase information first:

ω(t) =
d
dt
[arctan

Q(t)
I(t)

] =
I(t)Q̇(t)− İ(t)Q(t)

I(t)2 +Q(t)2 , (8)

where ω(t) is related to the velocity function of the cardiac
motion, and Q̇(t) and İ(t) denote the time derivative of Q(t)
and I(t), respectively. To reconstruct the desired phase infor-
mation, which represents cardiac motion, integration can be

applied to the above result. Therefore, the signal phase can
be recovered in the digital domain as:

Φθ[n] =
n

∑
k=2

I[k]∆Q[k]−∆I[k]Q[k]
I2[k]+Q2[k]

, (9)

where I[k] and Q[k] are the discrete samples of the I/Q chan-
nel outputs. ∆I[k] = I[k]− I[k−1] and ∆Q[k] = Q[k]−Q[k−
1]. The operation block diagram is also included in the
“smart center” of Fig. 3. By introducing an accumulation
procedure, noises with zero means can be effectively sup-
pressed. Once Φθ[n] is obtained, the cardiac motion x[n] can
be linearly obtained based on a single scale calibration.
5 Continuous Authentication
5.1 Heart Geometric Features
5.1.1 Segmentation

To extract the invariant descriptors from the cardiac mo-
tion signal of the subject, we segmented the periodical signal
sequence into discrete frames. For fiducial descriptors, there
exist literature [6, 45, 50, 63] where multiple cardiac cycles
were used. We have investigated the performance with vari-
ous numbers of cardiac motion cycles. Though each segment
(see Fig. 5(a)) includes all five heartbeat motion stages, the
variations across individuals within one cardiac cycle may
not be sufficient for differentiation. This segmentation with
disparate cardiac motion cycles benefits the signal alignment
because it associates the segment with the physiological car-
diac motion in one or multiple cycles.

(a) Segmentation illustration. (b) The selected fiducial points:
AFP, ASP and VFP.

Figure 5. Segmentation and fiducial points illustration.
5.1.2 Fiducial descriptors

The fiducial-based method extracts intrinsic geometrical
descriptors (e.g., temporal, amplitude, area or angle) from
fiducial points in the cardiac motion signal. Specifically,
fiducial points are the biomarkers with physical meanings
in clinics during the cardiac motion cycle. Fiducial points
contain the biological information that is unique and non-
volatile for individuals, and are also independent of the sen-
sor location or state of the individual such as anxiety, ner-
vousness, or excitement [30]. On the other hand, non-
fiducial-based methods focus on the non-physical attribute
features, which fails to reflect the intrinsic geometric fea-
tures of the heart. Also, they are computationally demand-
ing [8] and apt to be interfered by parameters setting [77],



making non-fiducial-based methods inapplicable for contin-
uous real-time authentication. In the fiducial-based method,
the cardiac displacement signal is well matched to the car-
diac activity rationale in Section 2. The first stage, Ventricu-
lar Filling (VF), is when the semilunar valves (SV) close and
the atrioventricular valves (AV) open. The whole heart is re-
laxed and the blood charges into atria as well as ventricles,
resulting in the outward expansion of the heart. The second
stage, Atrial Systole (AS), is when atria contract to pump
their contained blood into ventricles. The heart will con-
tract inward first due to the emptying of atria. It will expand
outward again because the extra blood in atria is squeezed
into ventricles (SV will close to prevent blood from flow-
ing into arteries). The third stage, Isovolumetric Ventricular
Contraction (IC), is when ventricles begin to contract and
SV/AV close. Since there is no change in volume, no signifi-
cant displacement occurs. Lastly, Ventricular Ejection (VE),
is when SV opens and ventricles are contracting and forcing
blood into arteries. As a result, the heart will contract inward.
During the fifth stage, Isovolumetric Ventricular Relaxation
(IR), ventricles finish the blood ejection, stop contracting and
begin to relax. This cycle ends and begins anew.

Fig. 5(b) is a complete segment which shows the changes
of the cardiac displacement. Based on the cycle descrip-
tion above, the signal is typically further split into four sub-
frames, each of which is labeled with the corresponding
stage. We will refer to ST and ED as the starting point and
ending point of the segment. The fiducial points that we plan
to select are AFP, ASP and V FP, described as follows:
AFP: the first maximum point in the segment, which indi-
cates the end of the VF stage and the onset of the AS period
where the atrial muscles contract to squeeze the blood into
the ventricles.
VFP: the second maximum point in the segment, which lo-
cates at the end of the AS stage. The blood flows into the
ventricles and reaches the largest volume.
ASP: the local minimum point between AFP and ASP. It
represents the end of atria contraction and the start of ventri-
cles expansion.

Table 1 lists a few descriptors based on the above fiducial
points. Note that all the time descriptors Ti are normalized
by the duration of one cardiac cycle, so that these descriptors
are independent of heart rate.

Table 1. Fiducial-based descriptors.
List Descriptor Definition
T1 Normalized Time interval between ST and AFP.
T2 Normalized Time interval between AFP and ASP.
T3 Normalized Time interval between ASP and V FP.
T4 Normalized Time interval between V FP and ED.
H1 Displacement difference between ST and AFP.
H2 Displacement difference between AFP and ASP.
H3 Displacement difference between ASP and V FP.
H4 Displacement difference between V FP and ED.

Fiducial point extraction is of great importance to accu-
rately locate the feature point. Due to the potential clut-
ter noise, the radius of curvature is more robust than the
more straight-forward local extreme point or signal deriva-
tives. Specifically, we selected three points X , Y and Z with
a fixed time interval along the time sequence. The minimum

Figure 6. The radius of curvature is calculated as the vec-
tor cross product between the two directed line segments.

(maximum) radius of curvature in the corresponding region
is found by maximizing (minimizing) the value of δ using the
vector cross product between the two directed line segments,
as shown in Fig. 6.

5.2 Continuous Authentication Protocol
One time validation of a user’s identity, referred to as

static authentication, has shown its vulnerability to attacks.
Specifically, malicious adversaries may access the system
that has been logged in by an authentic user when the au-
thentic user is not nearby. Unlike static authentication, con-
tinuous authentication represents a new security mechanism
which continuously monitors the user’s trait and use it as a
basis to re-authenticate periodically throughout the login ses-
sion. Therefore, continuous authentication significantly en-
hances the security level of systems. Cardiac Scan enables
unobtrusive and non-contact continuous authentication with
the radio frequency (RF) interrogation, during which RF sig-
nals transmit and measure the human target continuously. By
demodulating the received echo signal, the cardiac motion
pattern of the user can be extracted. In what follows, we
will discuss continuous authentication parameters and three
typical continuous authentication scenarios.
5.2.1 Continuous Authentication Parameters

Two parameters, refreshing interval Tr and negative toler-
ance threshold T hnt , are important in continuous authentica-
tion, which are unique compared to static authentication.
Refreshing interval Tr: It is defined as the interval between
two consecutive authentications. The appropriate choice of
Tr has an impact on the performance and usability of contin-
uous authentication. If Tr is too large, malicious adversaries
may not be detected in time, thus may lead to severe security
issues. On the other hand, if Tr is too small, some random
activities (e.g., making phone calls, drinking water, turning
around) or rhythmical body movement (e.g., listening to mu-
sic) may compromise the system’s recognition accuracy due
to false alarms. Considering these random activities usually
take about several seconds, we have set the refreshing in-
terval as 5 sec. Note that the refreshing interval should be
differentiated from the authentication time Ta. The latter is
defined as the time duration for a single authentication pro-
cess and will be discussed in subsection 7.2.
False negative tolerance threshold T hnt : Usability is care-
fully considered in continuous authentication to make sure
the authentic user will not frequently be interrupted by mis-
takenly logging out of the system. In other words, we aim
to avoid the false negative event, which is the incorrect clas-
sification of an authentic user as an adversary due to motion
artifacts. We noticed that false negative events are rare and
appear sparsely in Cardiac Scan, which means there is a low
probability that more than one “classified as adversary” event



occurs consecutively when the authentic user is present. On
the other hand, when the adversary is present, the “classified
as adversary” event will occur consecutively. After observ-
ing such phenomena, we define the false negative tolerance
threshold as the number of permitted consecutive “classified
as adversary” events. Empirically, the value for this thresh-
old can be 1 or 2. The larger value setting is more tolerant to
false negative and the smaller value setting is more sensitive
to risk. In the following scenarios, we adopt the threshold
setting of 1 because the usability of continuous authentica-
tion will not be compromised given the low false negative
rate of Cardiac Scan. In the mean time, this setting main-
tains a high sensitivity to unauthorized access.
5.2.2 Continuous Authentication Scenarios

We devise three scenarios in particular for Cardiac Scan
enabled continuous authentication, including Authentic user
is present, Authentic user leaves, and Adversary is present.
Authentic user is present: When an authentic user has
logged into the system and is present within the range of the
radar sensor, Cardiac Scan is able to detect sensed cardiac
motions are from the same person who was initially autho-
rized. Thus, the permission of using the system for the user
can be continuously granted without any interruption, unless
the user logs off intentionally or leaves, as shown in Fig. 7
(a). By designing the false negative tolerance, Cardiac Scan
allows one single “classified as adversary” event given that
the classification results just before and after this event are
both positive as “classified as authentic user”. In case two or
more than two consecutive “classified as adversary” events
occur, though it has a low probability, Cardiac Scan will log
out the initial user. Under such a circumstance, the user has
to re-authenticate by confirming its identity again using other
complementary existing biometrics approach, such as PIN,
or fingerprint. Note that, for a scenario which has a specific
requirement, the system tolerance level can be adjusted by
changing the value of T hnt .
Authentic user leaves: When the authentic user is away
from the system and the radar sensor has detected the user’s
absence, as shown in Fig. 7 (b), Cardiac Scan will first check
whether the user has logged off and the system has been
locked up. If so, Cardiac Scan will classify the user’s ab-
sence as a legitimate action and no further action needs to be
taken. Otherwise, the system is at risk of unauthorized ac-
cess, hence necessary actions such as locking the session,
logging out the original user, or notifying the administra-
tor [66], which depend on the system policy, have to be con-
sidered to address the security risks.
Adversary is present: In this scenario, an unauthorized ad-
versary (the dark one in Fig. 7 (c)) is present and close to
the system, and the system has been logged in initially by an
authentic user. This can happen when the authentic user is
under coercion attack that being forced to be present or the
adversary takes over the system before the system automat-
ically locks up when the authentic user leaves. Therefore,
immediate action is demanded to keep the adversary outside
the system and prevent the leakage of sensitive information.
In this case, Cardiac Scan will immediately log out the initial
user and lock up the system once the false negative tolerance
threshold T hnt is exceeded.

Figure 7. Continuous authentication scenarios: (a) Au-
thentic user is present, the system remains unlocked. (b)
Authentic user leaves, the system locks up. (c) Adversary
is present, the system locks up. Green screen means the
system is unlocked, red screen means locked.

6 Experiments and Validation
6.1 Experimental Setting

We conducted a pilot study to prove identifiability in car-
diac motion. A Doppler radar cardiac motion detection sys-
tem has been developed for the study, which works at the
frequency of 2.4 GHz, bandwidth of 5 kHz, and the sam-
pling frequency of 40 Hz. Though WiFi and Bluetooth also
work at 2.4 GHz, our cardiac motion signal will not be in-
terfered by them. This is because the motion information
to be detected is only a few Hertz, which means the re-
ceived signal and the transmitted signal are only separated
by a few Hertz, while other signals from potential interferes
(e.g., WiFi, Bluetooth) have a much higher frequency sepa-
ration and are easily rejected by the baseband signal. In an-
other word, the transmitted signal and the received signal are
“coherent”, whereas other signals are not coherent with the
transmitted signal. The Doppler radar has two antennas with
the beam width of 45 degrees, one for transmitter and one
for receiver. The power consumption of our radar is only 650
mW with 5 V voltage and 130 mA current. And the transmis-
sion power level of it is almost a thousand times less than the
peak power of an ordinary global system for mobile commu-
nications (GSM) cellphone, so it is safe for human-related
applications. The experimental setup is shown in Fig. 8, a
subject sat in a chair in a relaxed condition. The customized
Doppler radar sensor was placed in front of the subject with
a distance of 1 m. A smartphone was placed close to a radar
to record the subject identity and label the ground truth. The
radar signal demodulation is done in a laptop equipped with
Intel i7-3770 CPU @ 3.4 GHz. Motion compensation was
carried out for the baseband complex signal obtained from
subjects who breathed normally but randomly moved their
body. A pulsed sensor (UFI 1010 pulse transducer) was at-
tached to the subject’s finger to provide a heartbeat refer-
ence, and a chest belt (UFI 1132 piezo-electric respiration
transducer) was used to provide a respiration reference.

6.2 Data collection
As described above, our project evaluation relies on a

strategically developed experiment that will involve a co-
hort of participants. We hold an existing active IRB protocol
(# 502984/503753, Texas Tech University) that allows for
recording body motion from adult human participants user
identification. All the evaluations tightly follow the rule of
IRB regulation. Seventy eight healthy subjects (46 males
and 32 females) with their ages in the range of 16 - 54 par-
ticipated in the study. Their weights are between 42 - 83



Figure 8. Experimental setup for cardiac motion sensing.
A subject is sitting one meter away from the radar sensor,
and a pulsed sensor was attached to the subject’s finger.
kg. Neither of them has any heart disease. Each subject has
20 trials, and each trial lasts eight seconds including 8 to 10
cardiac cycles. In each trial, all subjects are required to sit
in front of the radar, unless specified in the evaluation, to
get the cardiac motion signals collected. Therefore, in to-
tal there are 20 sets of data containing 14,886 cardiac cycle
samples in the evaluation. Currently our work focuses on
healthy people, the evaluation on subjects in pathology and
surgery (e.g., heart diseases) is out of the scope of this work.
6.3 User Classification

To prove the identifiability in cardiac motion, dynamic
time warping (DTW) [79] is used as the similarity match-
ing metric. Support vector machine (SVM) with radial ba-
sis function (RBF) kernel classifier and 10-fold cross valida-
tion were employed for the 20 sets of data in the evaluation,
among which 18 are for the training and 2 for the testing. The
choice of the classifier will be further discussed in Section
7.1.4. In authentication, initially, the owner’s cardiac mo-
tion template is stored in the system. Then, unknown users
attempt to access the system by keeping still in front of the
radar. Since there are total 78 participants, and each partic-
ipant act as an owner once while remaining participants act
as attackers. Thus, for every authentication trial, the owner
and attacker ratio is 1:77.
6.4 Body Movement Interference Suppression

Compared with cardiac motion, body movement may re-
sult in a large perturbation to the output DC offset, and thus
confuse the radar demodulation algorithm or even saturate
the baseband circuit. In the experiment, the time-domain
signal had fluctuations due to the random body motion as
shown in Fig. 9(a). Strong near-DC spectral components
were observed and the heartbeat was invisible in the spec-
trum as shown in Fig. 9(b). Simply reducing the front-end
gain, as adopted in some communication systems, does not
work because the radar will lose the sensitivity to the weak
cardiac motion signal.

Because biomedical radar can detect cardiac motion from
four sides of a human body, multiple radars can be in-
stalled at different locations around the human body to can-
cel out random body motion based on the different patterns
of body motion and cardiac motion [41]. In the view of the
two radars, the heartbeat-and-respiration-caused body move-
ments are in phase, while the random body movements are
out of phase. For example, if two radars detecting from the
front and the back of the body, when the body is drifting to-
ward one radar, it is moving away from the other; whereas

heartbeat presents similar expansion/contraction patterns to
the two radars [40]. Therefore, random body motion cre-
ates an opposite Doppler frequency shift to the signals of
the radars, while cardiac motion leads to the same polar-
ity. By properly combining the low-speed baseband signals
from the radars, one type of motion can be canceled and the
other type will be enhanced [41]. Note that although the ran-
dom body movement can exist in the direction perpendicu-
lar to the radar direction, our body movement cancellation
method still works effectively because only the movement in
the radar direction is critical for the cardiac motion detection.
Fig. 9(c) shows the results after random body motion can-
cellation, where not only are the near-DC interference sup-
pressed but also the heartbeat signal is clearly visible based
on the proposed solution. Moreover, respiration signal can
also be identified within a range of frequencies which is the
most prominent peak in the spectrum.

6.5 Signal Validation
We verified the validity of the collected data from our

system. When the radar sensor detects the cardiac motion,
the fingertip sensor simultaneously collects a signal as the
ground truth signal. Both the radar sensor and fingertip pulse
sensor were sampled at 40 Hz. Fig. 10 demonstrates the car-
diac motion signal (after noise reduction) obtained from the
radar sensor. The corresponding fingertip signal is also il-
lustrated as the ground truth in the bottom. We observed
that the cardiac motion cycles are in similar shape and ap-
pear periodically, each of which precisely match the peaks
in the fingertip signal. So we verified that our system could
accurately detect the cardiac motion signal in a non-contact
way.
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Figure 9. (a) Twenty seconds time-domain signal un-
der random body motion; (b) Spectrum without random
body motion cancellation; (c) Spectrum with the random
body motion cancellation, where the blue curve repre-
sents the pulse sensor signal and the grey dot dash curve
represents the respiration signal.



7 Evaluation Results
As a potential breakthrough technology, it is necessary to

evaluate the performance, flexibility, and vulnerabilities in
practice of Cardiac Scan. Note that all the performance re-
sults are obtained after random body movement suppression
except the one specified as “before random body movement
suppression” in the evaluation of subject in motion. We em-
ployed several statistics to describe the performance of Car-
diac Scan.
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Figure 10. The cardiac motion and the fingertip signal.

7.1 Accuracy
7.1.1 Balanced Accuracy and F-measure

We provided the F-measure accuracy (F1 score) and bal-
anced accuracy (BAC) for the accuracy measurement, both
of which are non-sensitive to class distribution and can avoid
misleading accuracy measurement when the true class dis-
tribution is unbalanced. F1 score is known as the harmonic
mean of precision and recall, precision p is the number of
true positive (TP) divided by the number of positive calls
(TP+FP) while recall r (a.k.a. true positive rate) is the num-
ber of true positive (TP) divided by the number of condition
positives (TP+FN) where FP is false positive and FN is false
negative. F1 score reaches its best value at 1 and worst at 0.
Simply, F1 score is defined as follows:

F1(%) = 2 · precision · recall
precision+ recall

=
2T P

2T P+FP+FN
. (10)

And BAC is the equal combination of true positive rate
(TPR) and true negative rate (TNR), which is defined as:

BAC(%) = 0.5∗T PR+0.5∗T NR

=
0.5∗T P
T P+FN

+
0.5∗T N
T N +FP

,
(11)

where TN is true negative.

Table 2. Accuracy comparison for different number of
cardiac cycles.

1 cycle 2 cycles 4 cycles
F1 (%) 95.56 97.27 98.61

BAC (%) 95.56 ± 0.92 97.27±0.65 98.61±0.38

Table 2 shows the average F1 and BAC accuracies of the
authentication with different configurations. BAC achieve
95.56%, 97.27% and 98.61% with the standard deviation
(STD) of 0.92%, 0.65% and 0.38% for 1 cycle, 2 cycles and
4 cycles, respectively. F1 values are exactly mean values

of BAC, which are 95.56%, 97.27% and 98.61% for 1 cy-
cle, 2 cycles and 4 cycles. The results indicate that the in-
crease of segment length improves accuracies. Furthermore,
the performance benefits from the longer segment length and
achieves the best accuracy of 98.61%.

Figure 11. The average ROC curves with AUC of 78 sub-
jects with different number of cardiac cycles.

7.1.2 Receiver Operating Characteristic
Receiver operating characteristic curve is created by plot-

ting the true positive rate (TPR) against the false positive rate
(FPR) at various threshold settings, which illustrates the per-
formance of a binary classifier system as its discrimination
threshold is varied. Fig. 11 depicts the average ROC curves
of 78 subjects with different segment lengths. The signal
with 4 cycles exhibits the best performance among three dif-
ferent segmentation configurations, which is consistent with
the results of BAC and F1. Specifically, the corresponding
area-under-curve (AUC) for each curve is also calculated as
98.38%, 97.13% and 95.75% for signals with 4 cycles, 2 cy-
cles and 1 cycle, respectively.
7.1.3 Equal Error Rate

The equal error rate (EER) is a performance metric for au-
thentication systems. It is a rate when the operating thresh-
old for the accept and reject decision is adjusted such that
the acceptance error (false positive rate, FPR) and rejection
error (false negative rate, FNR) becomes equal. The lower
the equal error rate value, the higher the accuracy of the au-
thentication system. Fig. 12 depicts the EER of 78 subjects
with different segment lengths. The mean of EER is 10.37%,
8.79% and 4.42% for 1, 2, and 4 cycles, respectively.

Figure 12. The equal error rate of 78 subjects with a dif-
ferent number of cardiac cycles. Four cardiac cycles con-
figuration has the lowest EER.
7.1.4 Classifier Impact

We compared two different classification techniques to
select the best classifier for our application, including sup-
port vector machine (SVM) and k nearest neighbors (kNN).
A linear, a polynomial, and a radial basis function (RBF)



Table 3. The BAC and EER comparison.
BAC (%) EER (%)

kNN 90.85 12.27
SVM (linear) 95.17 9.13

SVM (polynomial) 96.65 6.39
SVM (RBF) 98.61 4.42

kernel are adopted for SVM. Parameters of each classifier
are tuned to achieve the best performance. The number of
nearest neighbors k = 4, and γ and C of RBF function are
0.001 and 10000, respectively. Four cycles of cardiac motion
are employed in this evaluation. The BAC and EER results
are shown in Table 3. KNN has the lowest BAC of 90.85%
and highest EER of 12.27%. SVM with RBF kernel has the
highest BAC of 98.61% and lowest EER of 4.42%. SVM
with linear and polynomial kernel have BAC of 95.17% and
96.65%, EER of 9.13% and 6.39%. The SVM with RBF ker-
nel showed the best performance, which will be adopted in
this paper for the classification.

95.85±0.92
97.04±0.66 97.26±0.59

98.53±0.38 98.62±0.39 98.57±0.38

Figure 13. The balanced accuracy of 78 subjects with
different authentication time. Authentication with 4 sec
duration is the optimal choice.
7.2 Authentication Time

Another important performance metric for the user au-
thentication system is the authentication time. Generally,
a practical user authentication mechanism should not only
be accurate in identifying the legitimate owners and the in-
valid attackers, but also time-efficient in processing authen-
tication. We specifically defined the authentication time in
terms of the total time elapsed, Ta, to make a final prediction
for each user access attempt:

Ta = Tcardiac motion sensing +Tprocessing, (12)

where Tcardiac motion sensing is the minimum time that Cardiac
Scan needs to collect the cardiac motion signals with the
smart radar device. This depends on the number of cardiac
cycles required to identify users. Tprocessing is the time needed
to process cardiac motion signals, including demodulation,
denoise, feature extraction and user authentication.

To evaluate the authentication time efficiency, we applied
different time restrictions on authentication time. Twenty
subjects repeated the experiment with six different duration
setups from 1 sec to 6 sec with increments of 1 sec. The
balanced accuracy with different authentication time is illus-
trated in Fig. 13. The error bars are the STD of BAC among
78 subjects. We observed that the authentication duration
less than 3 sec are not long enough for reliable authentica-
tion, with low BAC (95.85% for 1 sec, 97.04% for 2 sec,
97.26% for 3 sec) and high STD (0.92% for 1 sec, 0.66% for
2 sec, 0.59% for 3 sec). The performance is improved when
the duration is increased to 4 sec with BAC of 98.53% and

STD of 0.38%. Generally speaking, the accuracy increases
with the longer authentication time. However, when the du-
ration is greater than 4 sec, the performance improvement is
not significant. To be specific, BAC of 98.62% and 98.57%,
and STD of 0.39% and 0.38% are for 5s and 6s, respectively.

We also provided the growth rate for different authenti-
cation duration to find the optimal duration in Table 4. The
growth rate is calculated by the accuracy in the current du-
ration and the previous duration. The growth rates for each
second are 1.23%, 0.23%, 1.29%, 0.09% and -0.05%. Re-
garding the growth rate, the duration of 4 sec has the largest
growth rate, and seems to be a significant turning point.

Table 4. The BAC and growth rate under different au-
thentication duration.

Duration 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec
BAC (%) 95.85 97.04 97.26 98.53 98.62 98.57

Growth (%) - 1.23 0.23 1.29 0.09 -0.05

7.3 Evaluation in Complex Conditions
Another critical evaluation aspect is user experience. Typ-

ically, the user experience can be defined as: a person’s per-
ceptions and responses that result from the use and/or antic-
ipated used of a product, system or service [2]. Therefore,
the evaluation of user experience mainly focuses on the atti-
tude/feeling of a person towards a product/system during its
intended practical use. Traditionally, several methods have
been widely adopted to maximally collect the feedback of
a person on the product/system, such as interview, observa-
tion or survey. One unique aspect of the Cardiac Scan from
many conventional authentication methods is that it is com-
pletely non-contact and passive to the user. Under normal
conditions, the cardiac motion is not controllable or visible
(even though it may be felt) to the user, which means that in
most cases, the user will not be conscious of the interaction
with the system in daily use. We also plan to evaluate usabil-
ity with four variations: sensor distance, sensor alignment,
emotional state, and subject in motion.
Distance Impact: We evaluated the impact of distance on
the accuracy of cardiac motion authentication. The distance
is defined as the length between the subject and the antenna
of Doppler radar sensor. To make the Doppler radar sen-
sor safe for human applications, we have restricted the trans-
mission power, so that the effective distance for the Doppler
radar is 2 meters. Based on our observation, the amplitude
of the baseband radar I/Q signal is inversely proportional to
the distance between the subject and Doppler radar sensor.
When the subject is far away from the Doppler radar sen-
sor, the amplitude diminishes because it is difficult for the
sensor to capture the slight cardiac motion. Fig. 14 illus-
trates the ROC of different radar distance comparison. Not
surprisingly, the closest distance of 1 m has the best recogni-
tion performance. The accuracy decreases with the increas-
ing distance between radar and subject.
Location Sensitivity: As part of our understanding of how
well non-contact cardiac motion can be utilized for identify-
ing individuals, we investigated the relationship between var-
ious radar sensor orientation and identification performance.
The hypothesis is that the extracted cardiac feature is insen-
sitive to direction or orientation of the sensor beam. To test



Figure 14. The ROC of different radar distances.

this hypothesis, we have collected a set of cardiac motion
signals with a certain degree (5∼15◦ of orientation misalign-
ment). Specifically, multiple radar sensors were used during
the collection. One was placed in front of the subject, and
others were placed out of alignment. The BAC comparison
of each cycle length for different orientation misalignment is
shown in Fig. 15. The BAC results for disparate misalign-
ment with 0◦, 5◦, 10◦, 15◦ are stable as observed from the
figure, which supports our argument that the extracted car-
diac feature is insensitive to direction or orientation of the
sensor beam.

Figure 15. The BAC comparison for misalignment.
Emotional State: A user’s emotional state can change and
is unknown to the identification system. The changes in
emotional state will affect the cardiac motion (e.g, noise,
heartbeat strength/cycle). The hypothesis is that the indi-
vidualized features in cardiac motion are invariant to the
user’s emotional state. Research in heart-based biometrics
[28, 30, 58] have demonstrated promising results for this hy-
pothesis. To prove the usability and stability of Cardiac Scan
under an unknown emotional state, we have conducted a
set of experiments examining subjects in different emotional
state. We have designated a special protocol to collect car-
diac motion signals from low stress to high stress conditions.
Specifically, the selected subjects will perform two differ-
ent task groups before we collect the data. The low stress
tasks are the subject’s baseline state, meditative, and recov-
ery states. The high stress tasks are reading aloud, math-
ematical manipulation, driving in virtual reality, and inten-
sive exercise. The BAC and EER comparison among all the
emotional tasks are shown in Fig. 16. The red bars with tex-
ture represent BAC and blue bars represent EER. The BAC
and EER exhibit consistent performance across six different
activities, including low stress and high stress conditions,
which verifies that the emotional state will not impact the
system performance.
Subject in Motion: Body movement may result in large per-
turbations to the output DC offset, and thus confuse the radar
demodulation algorithm or even saturate the baseband cir-
cuit as described in detail in subsection 6.4. In this case, the

98.41±0.38 96.83±0.3897.96±0.37 97.73±0.37 98.21±0.39 97.65±0.38

4.42±0.39 4.35±0.41 4.28±0.37 4.56±0.39 4.47±0.38 4.62±0.39

Figure 16. The comparison among all emotional tasks.

recognition accuracy may be compromised, thus, the present
user will experience logging out of the system. We inves-
tigated random movements in four activities ranging from
less motion to more motion, including writing, drinking wa-
ter, making phone calls, and one rhythmical movement when
listening to music, to show the impact of body movement to
the system performance. Twenty subjects participated in the
experiment and each one performed all four body movement
activities for 10 times, a total of 200 trials for each activity
are performed. Two radars are deployed in the front and at
the back of the human body, and the measurement has to be
performed simultaneously from both sides to cancel out the
random frequency drift. With the current system setting, we
evaluated how many times the authentic user is mis-classified
as an unauthorized user before and after the body movement
suppression approach described in subsection 6.4 is applied.
The comparison results are shown in Fig. 19. Before body
movement suppression, the mis-classified occurrence is 7 for
making a phone call, 6 for drinking water, 5 for writing, and
18 for rhythmic movement. The rhythmic movement is more
readily mis-classified because of it is periodic to some extent.
The corresponding results after suppression are reduced to 2
for making a phone call, 1 for drinking water, 1 for writing,
and 3 for rhythmic movement, respectively.
Multiple Subjects: The Doppler radar sensor is capable of
detecting cardiac motions when multiple people are in the
sensor range. Signals from different people can be demodu-
lated and extracted separately. The baseband signals of I/Q
from two subjects are illustrated in Fig. 17, where I/Q sig-
nals show disparate shapes and cycle duration. We designed
an experiment to verify if the authentic user can be distin-
guished from others when multiple people are in the sensor
range. The authentic user is sitting in front of the sensor, one
subject is sitting next to the user, another subject is standing
behind the authentic user. Fig. 18 shows the clustering of
these three subjects using the features of range of displace-
ment, T1, and T2. We observed that the authentic user signals
are totally separable from two others, hence can be conve-
niently distinguished. If we allow the system is being oper-
ated when multiple people are in presence, all present people
must be authentic users, otherwise the system will lock up
following the scenario of “Adversary is present”.
7.4 Continuous Authentication Stability

Besides maintaining a high true positive and true negative
rate for authentication, we are particularly interested in low
frequency false negative events that mis-classify an authen-
tic user as an adversary in continuous authentication. As dis-
cussed in section 5.2.2, a usable continuous authentication



Figure 17. The baseband signals of I/Q from two subjects.
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Figure 18. Clustering of the authentic user, a subject sit-
ting next to the authentic user, and a subject standing
behind the authentic user.

system should always grant an access right to the authentic
user as long as he/she is using the system. Otherwise, it is
inconvenient even impossible to use the system if the user is
being interrupted and asked to log in again frequently. We
conducted an evaluation on a continuous authentication ses-
sion with four cardiac cycles setting. Under such configura-
tion, the mean of false negative rate is as low as 0.4%. All
78 subjects participated in this evaluation and each session
for each user lasts 40 minutes. Specifically, subject in turn
acts as the user to login the system and sit in front the sys-
tem, browsing webpages or reading papers, until 40 minutes
are reached or be logged out by the continuous authentica-
tion system. Not surprisingly, none of the subjects is forced
to log out of the system due to a false negative, which is
attributed to our continuous authentication protocol and pa-
rameters setting to maintain a satisfactory usability as de-
scribed in section 5.2.2.

Figure 19. Body movement suppression before and after.

Figure 20. The longitudinal BAC performance in two
months from 40 subjects.

7.5 Longitudinal Study
It is important to prove the permanence of biometrics

[32]. The permanence of heart-based biometrics was dis-
cussed in early experiments in many short-term studies
[7, 27, 55]. In addition, each cardiac motion is independent,
which means prior result has no impact on the current result,
so subsequent sessions study in short-term periods is not nec-
essary. However, there are currently no longitudinal studies
that establish this long-term persistence in any heart-based
biometrics. Our generated dataset has included multiple ses-
sions as part of a longitudinal approach to establish a base-
line comparison of long-term persistence. 40 subjects (22
males and 18 females) participated in the longitudinal study
lasting two months. Particularly, this study has two phases:
enrollment phase and authentication phase. In the enrollment
phase, training data were collected for each subject at the first
day of this longitudinal study. Each subject finishes 20 trials
in data collection events with the duration of each trial set as
eight seconds. After that, the long-term authentication phase
is carried out in the following two months. Each subject per-
formed 20 authentication trials and each authentication du-
ration is four seconds in this study. The BAC measurement
is depicted in Fig. 20. In the 60-day duration, mean val-
ues of BAC measurement are between 98% and 99%, STDs
are between 0.37 and 0.39. We concluded the BAC has no
significant performance decreasing or ascending tendency in
this longitudinal study, which demonstrates cardiac motion
is robust against time change.

8 Vulnerability Study
Investigating the vulnerability of Cardiac Scan is crucial.

Although cardiac motion is invisible and might possess bet-
ter safety and security than other authentication approaches
(e.g, PIN, fingerprint), it could become fallible under direct
or spoofing attacks [51]. One immediate attack approach is
the presentation of human characteristics to the acquisition
device, including different living traits (i.e., zero-effort im-
postor attempts that try to take advantage of the false accep-
tance rate (FAR) of biometric systems) [33].
8.1 Replay Attack

One major risk of using biometrics is the danger that the
biometric token can be intercepted and replayed by an unau-
thorized party. Compared to visual-based still biometrics
(face/fingerprint/iris), the cardiac signal is more complex and
dynamic to fake or replicate. However, there is still a chance
to compromise cardiac signal under some extreme scenar-
ios. Eberz et al. used a hardware-based arbitrary waveform
generator (AWG) and a computer sound card based AWG
software to encode and emulate an ECG signal for attacking
ECG biometrics on Nymi Band [24]. In cardiac motion sens-
ing, attackers might also hack into the database and obtain



cardiac motion patterns or engineer the same cardiac mo-
tion sensing device to extract a user’s cardiac signal. This
work is to prove the possibility of a replay attack on Car-
diac Scan if a legitimate user’s cardiac signals are obtained
by attackers. Our team has investigated the method of syn-
thesizing cardiac motion and developed a programmable ac-
tuator to imitate the cardiac motion. As shown in Fig. 21,
a linear actuator (ZABER TNA08A50) and a linear trans-
lational stage (ZABER TSB28-1) were placed 30 cm from
the cardiac motion-sensing device. The actuator was pro-
grammed to perform a harmonic back-and-forth motion to-
ward the fixed position radar for mimicking cardiac motion
patterns.
8.2 Anti-Spoofing: Liveness Artifacts

Our team has also investigated a set of anti-spoofing ap-
proaches against a replay attack. The general idea of anti-
spoofing is liveness detection [52,78]. Liveness detection has
been applied to existing biometrics systems by using living
traits of humans. It is a general methodology works against
counterfeit attacks because it is difficult for them to emulate
all or even multiple physiological signals at the same time.
For example, Pan et al. proposed the method to extract live-
ness information through eye blinks in face recognition [59].
Wei et al. detected counterfeit iris through texture analy-
sis [82]. In this work, we have exploited the uniqueness of
living traits in human cardiac motion to defend the above ad-
versarial model. Specifically, we have tackled this challenge
from two dimensions: hardware-based and software-based
approaches. First, we integrated assisted sensors in Cardiac
Scan, so that we can leverage additional information from
these sensors to examine the legitimacy of subjects and cap-
ture the characteristics of multi-dimensional cardiac motions
for liveness simultaneously. Specifically, as proposed in Sec-
tion 6.4, the system employed multi-channel radars for noise
reduction. Since the linear actuator only moves in rectilinear
directions, the direction of arrival (DoA) [47] measurements
with the linear actuator on these radars are different from
DoA measured with real cardiac motion. Second, we have
investigated software-based approaches. As shown in Fig. 9,
the sensor data from a live subject inevitably include vital
sign (e.g., respiration) and other motion artifacts (e.g., body
sway). These artifacts are not stored in the system database
as credentials, so they are unable to be replicated and emu-
lated for attack. Utilizing these vital sign detection and mo-
tion artifacts, liveness detection is conducted against the re-
play attack [28]. We programmed the actuator working with
different moving amplitudes and frequencies to imitate car-
diac motions of 12 subjects. All replay attacks were rejected
by our liveness detection method.

Figure 21. A linear actuator imitates cardiac motion.

9 Related Work
Heart-based Identification: Heart-based identification has
a long and rich research history in biometrics. There is siz-
able literature on user identification by analyzing heart-based
signals. The most studied heart biosignals in identification
application are the multi-lead electrocardiogram (ECG) body
signals. Singh used both the analytical method of extract-
ing fiducial features and the appearance method of extract-
ing morphological features from the ECG trace for individ-
ual identification. The linear projection to a low-dimensional
subspace is later applied to select the most significant fea-
tures [73]. Zhao et al. extracted ECG feature for a human
identification system by decomposing ECG signal into in-
trinsic mode functions using ensemble empirical mode de-
composition [89]. Y. Singh and S. Singh delineated ECG
waveform and extracted end fiducials from the heartbeat for
individual authentication. The system is also evaluated in
combination with face and fingerprint biometrics [74]. Silva
et al. collected ECG from fingers for user authentication
[20]. Safie et al. generated ECG features for authentication
by using a pulse active ratio (PAR) technique [69]. To im-
prove usability, other heart-related biosignals, such as Pho-
toplethysmogram (PPG) [70, 76, 86], carotid pulse [19, 34],
and finger pulse response [66], were investigated for human
identification. Recently, there are some off-the-shelf user au-
thentication products (e.g., the Nymi band [1]) using heart
signatures from wrist pulse signals. However, these biosig-
nals are not related to cardiac motion, in which case indi-
rect or incomplete cardiac characterization will compromise
the advantages of cardiac motion as a biometric. Moreover,
these biosignals have to be obtained through skin contact,
which is inconvenient and limits their applications for con-
tinuous authentication.

Continuous User Authentication: Most user authentication
procedures, such as fingerprint or facial identification, only
demand a one-pass session, which enables impostors to ac-
cess the system until the user logs out. To address this se-
curity flaw, methods of continuous user authentication are
explored. There are three categories. One category is to use
soft biometric traits. Niinuma et al. used the color of user’s
clothing and facial skin for continuous monitoring [56]. This
approach is readily counterfeited to confuse the system. The
second category is to use behavioral biometrics. Keystroke
dynamics, especially the rollover pattern, has been used for
continuous authentication (Pinto et al. [62], Shepherd [72],
Ali et al. [9]). Saevanee et al. utilize a text-based multimodal
biometric including linguistic analysis, keystroke dynamics
and behavioural profiling [68]. Behavioral screentouch fea-
tures have also been explored for continuous authentication
(Frank et al. [26], Chan et al. [15]). Some studies lever-
aged eye movement biometrics (Eberz et al. [25], Mock et
al. [54]). Sitova et al. used hand gestures for continu-
ous smartphone authentication [75]. However, these meth-
ods require users to be obligated to continuously interact
with systems for authentication. Khan et al. developed an
implicit authentication (IA) framework for Android smart-
phone based on behavioral biometrics [36]. But there is no
new biometrics proposed in this work and this framework



takes effect only on smartphone. The third category is to use
physiological biometrics. Rasmussen et al. utilized human
body pulse-response as a continuous authentication mecha-
nism [66]. However, this method demands the human body
to make contact with electrodes, which is not user-friendly.
Radio-based Human Sensing: In recent years, there is a
large wave of research work on radio-based (e.g., WiFi) hu-
man sensing applications. Pu et al. investigated gesture
recognition by using radio signals [65]. Wang et al. stud-
ied radio signal analysis for people localization and motion
tracking [81]. Li and Zhu explored the possibility of ex-
tracting fine-grained gait parameters from radio signals [46].
Adib et al. showed that a radio-based sensing system can
collect physiological information, such as respiration, heart-
beat, for health monitoring [5]. Obeid et al. obtained heart
rate and heart rate variability (HRV) via microwave Doppler
radar [57]. Boric et al. separated two subjects through mul-
tiple antenna systems [13]. Zhao et al. proposed EQ-Radio
to infer a persons emotions from RF signals reflected off
his body [88]. Scientists at Argonne National Laboratory
have devised a millimeter-wave (mmW) system to remotely
measure heartbeat, respiration and body motion [3]. How-
ever, little work exists for radio-based sensing identification.
Identification is very challenging because it requires obtain-
ing high-fidelity biometric information through non-contact
radio sensing.
10 Conclusion and Future Work

Existing biometric-based authentication systems are far
from satisfactory. In this paper, we introduced a novel bio-
metric system, Cardiac Scan, for non-contact continuous au-
thentication. Specifically, Cardiac Scan can measure the
unique cardiac motion of individuals with regard to the car-
diac moving dynamics (speed, acceleration, etc.) and heart-
blood circulation functionality in individuals. The system is
unobtrusive, difficult to counterfeit, and easy to use. Our pi-
lot study with 78 subjects showed that the system has a high
balanced accuracy and low equal error rate. We also eval-
uated the system in different complex use conditions. As
demonstrated in the longitudinal study, the cardiac motion
biometric is robust against time change.

Currently, our work focuses on healthy people. In the fu-
ture, we plan to evaluate Cardiac Scan with people of car-
diovascular diseases, such as cardiac arrhythmia or using
a cardiac pacemaker. In addition, other methods such as
wavelet transformation [43] and area calculation upon phase
portraits [64] will be further explored for fiducial point ex-
traction to improve the system accuracy.
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