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ABSTRACT

Drug efectiveness management is a complicated and challenging

task in chronic diseases, like Parkinson’s Disease (PD). Drug efec-

tiveness control is not only linked to personal out-of-pocket cost

but also afecting the quality of life among patients with chronic

symptoms. In the current practice, although that health and medi-

cal professionals still play a key role in the personalized treatment

plan, the critical decision on drug selection falls upon the individ-

ual report when patients call in or visit the clinics. Unfortunately,

most of the patients with chronic diseases either fail to report their

day-to-day symptoms or have a limited access to medical resources

due to economic constraints. In this paper, we present PDLens, a

irst smartphone-based system to detect drug efectiveness among

Parkinson’s in daily life. Speciically, PDLens can extract digital

behavioral markers related to PD drug responses from everyday

activities, including phone calls, standing, and walking. PDLens

models the PD symptom severity on drug treatment and detects the

change of severity scores before and after drug intake. A ranking-

based multi-view deep neural network is developed to decide the

drug efectiveness upon the symptom severity changes. To validate

the performance of PDLens, we conduct a pilot study with 81 PD pa-

tients and monitor their smartphone activities and severity changes

over 33693 drug intake events across six (6) months. Compared with

the standard clinical drug efectiveness test developed by Motor

Disorder Society, results reveal that PDLens is a promising tool to

facilitate drug efectiveness detection among PD patients in their

daily lives.

CCS CONCEPTS

· Human-centered computing → Ubiquitous and mobile com-

puting.
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1 INTRODUCTION

Nearly 10million peopleworldwide have Parkinson’s disease (PD) [1].

PD is one of the most common neurodegenerative diseases among

the elderly, and often leads to pain, immobility and disabilities.

Once PD is onset, the brain gradually stops making dopamine, a

chemical that helps send signals in human brain [2, 3]. Currently,

the most prescribed PD drug is levodopa (also called L-Dopa), a nat-

ural chemical that passes into the Parkinson’s brain and converts to

dopamine [4]. Nowadays, there are tens of PD drugs in the L-Dopa

class, such as Sinemet, Rytary, and Apomorphine [5]. Thanks to

the development of PD medicine science, medical professionals can

usually select the most proper drugs for PD patients based on the

clinical diagnosis and patient-reported symptoms.

Nevertheless, drug resistance [6] is very common during PD

treatment. Existing studies [7] show that nearly 50% PD patients’

symptoms do not respond well to the prescribed dopaminergic

drugs, and become resistant to L-Dopa treatment with disease pro-

gression and longer disease duration (e.g., PD onset after ive years).

Besides the less efectiveness in PD treatment, side efects to drug re-

sistance, such as nausea [8], hallucinations [9] and dyskinesia [10],

seriously afect the quality of life and even become a grave threat to

life [11]. If drug resistance can be identiied in time, PD profession-

als can adjust drug doses or forms, and efects of drug resistance

can be signiicantly relieved.

In recent years, mobile health technologies enable ubiquitous di-

agnosis and screening in many medical applications [12, 13]. There-

fore, we ask a question: is it possible to have a highly-accessible and

usable solution to drug efectiveness detection by leveraging ubiquitous

technologies, such as smartphones? We know that, once PD is onset,

the nerve cells responsible for producing dopamine progressively

die, which further causes a deicit in motor and non-motor features

[2, 14ś16]. When dopamine stays at a low level, PD patients will

develop related symptoms, such as vocal impairment, tremors, and

https://doi.org/10.1145/3372224.3380889
https://doi.org/10.1145/3372224.3380889
https://doi.org/10.1145/3372224.3380889
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Figure 1: Smartphone can work as a drug lens to augment

drug efectiveness detection among PD patients through

monitoring daily-life activities.

diiculty walking. For example, a patient can feel better (łon timež)

as a new dose of drug starts to take efect, while feeling worse (łof

timež) before he is due for a diferent drug dose or form [6, 15]. This

fact motivates us to explore a smart health solution to detect drug

efectiveness by exploiting symptom luctuations in daily life.

The goal of our work is to compare symptom severity before and

after drug intake to qualify drug efectiveness. For instance, when

the drug works well, the symptom gets relieved. As the disease pro-

gresses, the substantia nigra cells degenerate, and their capability to

store dopamine becomes signiicantly afected. In this case, the drug

efectiveness is weakened, and the symptomatic relief is obstructed.

Since the dopamine level is highly correlated to PD symptoms, a

smartphone can collect PD biomarkers, assess symptom severity,

and remind users occurrence of drug resistance in daily life. The

beneits of this smartphone-based solution are two folds.

• Burden-free Sensing: A smartphone is packed with a rich

set of built-in sensors. These sensors allow a smartphone to

collect multiple PD biomarkers from the daily-life activity

without extra sensors.

• Continuous Detection: Compared with clinic-based solu-

tions, a smartphone-based approach is daily accessible. There-

fore, it allows continuous detecting and reminds the emer-

gence of drug resistance in good time.

However, there still exists challenges. Although a rich set of

built-in sensors in the smartphone can detect PD biomarkers, tra-

ditional supervised machine learning process requires us to label

the symptom severity for the model training before it can detect

symptom severity in routine usage. This process even costs much

in clinics to fully specify the symptom severity, not to mention in

daily environment. To address this problem, we propose a ranking-

based solution which utilizes the following key observation. Even

measuring symptom severity at a given time is challenging, acquir-

ing comparison of symptom severity at two diferent times is easy.

Considering drug intake happens between two timestamps (called

i and j), we acquire that symptom severity at time i is more severe

than that at time j due to that drug intake relieves PD symptom.

To this end, we present PDLens, a smartphone-based end-to-end

system to facilitate self-detection of PD drug efectiveness (see

Fig. 1). It leverages the built-in sensors (i.e., accelerometer, gyro-

scope, and microphone) to collect digital PD biomarkers, i.e., gait,

balance, and voice from user daily activities. In particular, gait

refers to the walking patterns, and balance measures the falling

risk when standing. These digital PD biomarkers are sensitive to

dopamine levels in brains, thus respond to drug intake [17]. Af-

terward, we design and implement a drug efectiveness detector

that consists of a ranking-based siamese neural network. First of

all, we adopt a CNN-RNN architecture as the backbone for feature

extraction, where our convolutional neural network (CNN) is a

residual convolutional network and our recurrent neural network

(RNN) is a standard variety long short-term memory (LSTM). Then,

a motor-symptom scorer that consists of a RankNet scores symptom

severity. This motor-symptom scorer builds on that the comparison

of symptom severity that can be easily accessed in daily life. Thus,

it can achieve symptom severity detection without the need for

labeling the severity level. Moreover, our proposed ranking-based

multi-view neural network has diferent architectures in training

and inference phase. The architecture in training phase accepts two

samples from diferent timestamps (e.g., i and j), and calculates the

probability that symptom at time i is more severe than that at time

j . While in inference phase, the architecture accepts one sample and

infers symptoms severity. We inally acquire the drug efectiveness

by calculating the diference of symptom severity between before

and after drug intake.

We evaluate our system on a collected dataset, including 81 par-

ticipants enrolled in a six-month-long cohort study. As the irst

smartphone-based system that augments drug efectiveness detec-

tion in daily life, PDLens achieves 91.2% accuracy to detect drug

response and 74.4% accuracy to screen patients with poor drug

efectiveness. Moreover, the score predicted in PDLens is correlated

to that in standard clinical drug efectiveness test with a Pearson

correlation coeicient of -0.36 for enrolled participants. Our results

show that PDLens can work as the irst line of defense for detecting

drug resistance.

We conclude our contributions as follows.

• To the best of our knowledge, we perform the irst study to

investigate that everyday activity fusion can augment drug

efectiveness detection of PD.We assess three PD biomarkers,

i.e., voice, gait, and balance through the on-board sensors

of a commercial of-the-shelf smartphone. Their variabil-

ity between before and after drug intake provides valuable

insights to measure drug efectiveness.
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• We design and implement PDLens, a smartphone-based sys-

tem for detecting drug efectiveness in daily life. We hypoth-

esize that, for a PD patient, the symptom severity before and

after drug intake can be assessed by smartphone. To validate

this hypothesis, we design a ranking-based multi-view deep

neural network. It fuses three smartphone activities, auto-

matically extracts high-level features, and detects symptom

severity. After comparing the symptom severity before and

after drug intake, we infer the drug efectiveness.

• We evaluate our proposed PDLens on a dataset collected from

a daily-life scenario. Our results reveal that a smartphone

can assess this diference presented in symptom severity

before and after drug intake. Moreover, this diference is an

efective indicator of drug efectiveness. Our discovery will

not only pave the way for augmenting drug efectiveness

of PD patients in daily life but also pave the way for drug

efectiveness management in other related chronic diseases.

2 BACKGROUND

In this section, we will briely introduce the Parkinson’s disease

(PD).

2.1 PD Rationale and Symptoms

Parkinson’s disease (PD) is a long-term degenerative disorder of

the central nervous system (CNS) [18, 19]. At the very beginning,

the death of cells happens in the substantia nigra due to unclear

factors. Then, it destroys the dopamine pathway and results in

insuicient dopamine in these areas. As dopamine takes an essential

role in transmitting signals which help people move their bodies,

insuicient dopamine thereby induces PD symptoms [2, 3].

PD symptoms can be categorized as motor symptoms and non-

motor symptoms, where the most apparent motor symptoms can

include tremor, bradykinesia (slowness of movement), and postural

instability [20, 21], while non-motor symptoms include organs dis-

orders (i.e., vocal impairment and stomachic dysfunction) and mood

disorders [20, 21]. When the disease progresses, these symptoms

progressively make patients lose their mobility. In our study, we

focus on both motor and non-motor symptoms, where impairment

movement and balance belong to motor symptoms, while voice

disorder belongs to non-motor symptoms.

2.2 PD Treatment

Although PD cannot be cured, PD patients greatly beneit from

drug intake, which slows down the disease progression, relieves

symptoms, and improves the quality of life [20]. Once initializing

the treatment, patients are motivated to monitor their health condi-

tions. They usually have signiicant symptoms relieved after drug

intake. Over time, however, drug efectiveness frequently dimin-

ishes or becomes less consistent due to disease progression and

other comprehensive reasons [6]. We call this phenomenon as drug

resistance, which afects dopamine absorption. Fig. 2 is an example

comparing the good and poor drug efectiveness. The dashed line

marks the threshold of on-of time. In łon timež, patients feel symp-

toms relieved; while in łof timež, PD symptoms become signiicant

again. We can observe that drug resistance signiicantly narrows

down the length of łon timež .

Figure 2: An example of good (left) and poor (right) drug ef-

fectiveness. Dash linemarks the on-of time threshold. Drug

resistance impairs the dopamine absorption.

Since everyone’s symptoms and constitution are diferent, the

progression of drug efectiveness is usually unpredictable. Self-

management is unreliable because PD progresses very slowly, and

patients usually do not realize drug resistance until late time. Thus,

to help relieve symptoms and improve the quality of life, patients

are encouraged to visit clinics and upgrade their drug plan, includ-

ing prescription (e.g., levodopa, dopamine agonists, and MAO B

inhibitors [22]), daily dosage amount and dosage time, in good time.

2.3 PD Biomarkers and Smartphone Activities

In current clinical trials, disease disability and impairment are tra-

ditionally measured by PD professionals using the Uniied Parkin-

son’s Disease Rating Scale (UPDRS). However, the resources such as

time and economic burdens limit these visits. With the proliferation

of smartphones, researchers nowadays expect to utilize the built-in

sensors to enable continuous measurement of symptom luctuation

in daily life [23ś25].

In this paper, we explore the feasibility of detecting drug ef-

fectiveness using a smartphone. We collect digital PD biomarkers

from three everyday activity, i.e., walking, standing, and talking.

By measuring the symptom severity before and after drug intake,

we detect drug efectiveness.

3 PDLENS OVERVIEW

In this section, we present an overview of PDLens, including the

application scenario and system protocol.

3.1 Application Scenario

Our system, PDLens, builds on the fact that drug-intake induces

symptom luctuation in daily life. After drug intake, symptoms

get relieved; while symptoms return after drug efectiveness ends.

PDLens leverages built-in sensors to collect digital PD biomarkers

from everyday activities, including talking, walking, and standing

at a non-clinical environment. Since these activities are prevalent,

data collection can be burden-free or even passive. PDLens then uses

a score to quantify symptom severity. Further, it compares this score

between before and after drug intake to detect drug efectiveness.

3.2 Protocol

PDLens consists of three parts, i.e., a data collector, a data prepro-

cessor, and a drug efectiveness detector, respectively, as shown in

Fig. 3.
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Figure 3: The proposed PDLens consists of a data collector, a data preprocessor, and a drug efectiveness detector. It leverages

the built-in sensors to extract digital biomarkers (i.e., gait, balance, and voice) from daily-life activities (i.e.,walking, standing,

and speaking), and utilizes a customized deep neural network to achieve the detection of PD drug efectiveness.

Data Collector: Data collection happens in a nonclinical environ-

ment (e.g., at home or oice). Our system utilizes the built-in sensors

(i.e., microphone, accelerometer, and gyroscope) to collect three

diferent activities that highly reveal the symptom severity. In this

study, we design three experiments.

1) Voice Activity: Vocal impairment is one of the most common

and core PD symptoms. Surveys have unearthed that as many as

90% PD patients report onset of speech impairment after their PD

onset [26, 27]. PD vocal pathology stems from impaired function of

laryngeal, articulatory, and respiratory muscles, which is induced

by insuicient dopamine.

We utilize a microphone at the bottom of the smartphone to

record voice data. Data collection happens at home. In the exper-

iment, each participant is required to perform a 10-second-long

sustaining vowel sample. A built-in microphone records each sam-

ple with a sample rate of 44.1 kHz.

2) Walking Activity: Gait impairment is one of the most common

and disabling PD symptom [28ś30]. In early stages, the gait slows

and step length shortens. When the disease progresses, shuling

steps and freezing of gait (FOG) can happen as well. Since most gait

symptoms respond to dopaminergic medication, we can leverage

this gait variability as an indicator of drug efectiveness.

We utilize the built-in accelerometer and gyroscope in a smart-

phone to record walking data. Each participant is required to put

his/her smartphone in the pocket and walk unassisted for about 20

steps in a straight line. Each sample is recorded with a sample rate

of 100 Hz.

3) Standing Activity: Balance impairment is a common symptom in

mid-stage and advanced stage of PD. During disease progression,

PD afects the basal ganglia, a brain region to keep balance [31, 32].

Poor balance can make PD patients more likely to fall.

We utilize the built-in accelerometer and gyroscope in a smart-

phone to assess the balance. Each participant is required to put

their smartphone in the pocket and stand still for about 30 seconds.

Each sample is recorded with a sample rate of 100 Hz.

Data Preprocessor: As diferent sensing modalities achieve data

collection, the data structure is diferent. Considering the input

structure of a CNN requires uniied data format (e.g, a 2-D tensor),

We are motivated to preprocess this temporal domain data irst

before feeding them into a classiier. For this purpose, we adopt

spectrogram representation due to the following two beneits: 1)

Spectrogram can transform the temporal data with diferent length

into a 2-D igure, which its the input structure of a deep neural

network; 2) Spectrogram augments features of both the time domain

and the frequency domain, which can be helpful to improve the

performance of drug efectiveness detection.

Drug Efectiveness Detector: The drug efectiveness detector is

responsible for extracting features from represented data and de-

tecting drug efectiveness. It consists of a multi-view deep neural

network that contains three parts: 1) Multi-modal Sensor Fu-

sion addresses multiple smartphone activities fusion; 2) Feature

Extractor extracts features from sensor data; 3)Motor-symptom

Scorer scores PD symptom severity from extracted features.

4 DRUG EFFECTIVENESS DETECTOR

4.1 Design Consideration

Challenges: In Section 2 and Section 3, we describ that a smart-

phone can collect daily-life activities that contain PD biomarkers.

However, PDLens is expected to address the following three design

challenges for meeting the daily-life usage.

The irst challenge is how to fuse heterogeneous data. Difer-

ent sensing modalities carry the information from various views,

which complement each other and allow for useful information

gain. However, leveraging data from heterogeneous sensors is chal-

lenging. This challenge mainly comes from distinctive properties

and structures. In our study, PDLens adopts the built-in sensors of

a smartphone to collect three PD biomarkers and the challenging

can be seen as two-fold. First, sample rates can be entirely difer-

ent among diferent sensors. Inertial sensors (i.e., accelerometer

and gyroscope) have a sample rate of 100 Hz, but a microphone

has a sample rate of 44.1 kHz. Second, data channels are difer-

ent. Audio data is one-dimensional, while inertial sensors generate

three-dimensional data.

The second challenge is how to quantify drug efectiveness. To

measure the drug efectiveness, we intend to calculate the difer-

ence of symptom severity before and after drug intake. It can be
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challenging for a traditional approach. For example, considering

a method using Euclidean distance (L2 norm), L2 distance can be

large between two samples that both are collected before drug in-

take. Another approach is to use some traditional machine learning

algorithms. However, this approach requires hand-crafted feature

engineering and the prior knowledge about drug efectiveness in

smartphone data is far from being enough today. We can extract

some common features (e.g., average value, variance value, and RMS

value) from the data but we probably lose a lot of key information,

which sufers the accuracy loss. Moreover, a traditional model can

be incapable of learning key correlations among diferent sensing

modalities.

The third challenge is how to get the symptom severity label. As

described in Section 3, drug-intake induces symptom luctuation in

daily life. Thus, we expect to measure the symptom severity before

and after drug intake to detect the drug efectiveness. Intuitively,

we can leverage a traditional regression model to achieve this goal.

However, such a supervised learning method requires an expert

to help quantify and label the symptom severity. In fact, an accu-

rate score cannot be elicited without costing massive labors and

resources in clinics, not to mention in a daily-life environment.

Our Solution: To address these challenges, we design and im-

plement the drug efectiveness detector, a ranking-based siamese

neural network consisting of a data representation module and a

multi-view deep learning model (as shown in Fig. 4). We claim that

our drug efectiveness detector can address three aforementioned

challenges.

First, PDLens leverages the time-frequency representation to

project the heterogeneous data into the same dimension (see Sec-

tion 3.2). After transforming data from the temporal domain to the

time-frequency domain, we design and implement a ranking-based

multi-view deep neural network to combine information from mul-

tiple sensors. Each image is passed through the irst part of our

network separately, then aggregated at a view-pooling layer. In

particular, we adopt element-wise maximum operation across the

multi-view to aggregate the information [33].

Second, our feature extractor that includes a convolutional neural

network (CNN) and a long short-term memory (LSTM) is able to

automatically extract features thereby avoid hand-crafted feature

engineering. Moreover, this deep learning-based solution performs

better than traditional approaches in the following three aspects: 1)

back propagation allows to adjust weights for error correction; 2)

multi-layer neurons allow to capture both low-level and high-level

features; 3). activation functions (i.e., ReLU layer) provide the ability

to understand non-linear relationship between the data.

Third, this ranking-based solution utilizes the fact that drug in-

take relieves the symptom severity. Therefore, PDLens only expects

to know the timestamp (i.e., before and after drug intake) without

the need to fully examine the symptom severity. Moreover, PDLens

is a personalized model, which will not require labels to measure

the severity among patients [34].

4.2 Feature Extractor

The feature extractor contains a convolutional neural network

(CNN) and a long short-term memory (LSTM) architecture.

CNN:We adopt a residual network as our backbone for its ability to

learn identiied mapping well [37]. Specially, we employ 4 residual

blocks, each with 4 convolutional layers. There are 64 ilters in

the irst residual block, and the number of ilters doubles for each

following residual blocks. We use a 7×7 frequency-time ilter for the

irst convolutional layer, followed by 3×3 ilters for the remaining

convolutional layers.

The dimension of the last convolutional layerwill be in [Batch×C-

hannel×Height×Width] format. The irst element is the batch size;

the second element is the dimension of feature maps; the third and

the fourth elements are frequency and time context in our system,

respectively. According to our description mentioned above, our

output follows [Batch×512×7×7] format.

LSTM: After performing frequency modeling, we then unroll and

pass the output of the last convolutional layer to LSTM [38] for mod-

eling the time-domain signal. According to the strategy introduced

in previous work [39, 40], we especially implement 2 LSTM layers

for dimensionality reduction. Since the time dimensionality is 7,

each LSTM layer is unrolled for 7 time steps for training. The irst

LSTM layer has an input of 512×7 and an output of 64; while the

second LSTM layer has an input of 64 and an output of 64. Finally,

a view-pooling layer achieves the feature vectors concatenations.

4.3 Motor-symptom Scorer

After extracting and fusing features from daily-life activities, origi-

nal raw data are processed and transformed into tuples [x
p
i , ...,x

p
n ],

where x ∈ Rn is the collected data associated with patient p ∈ P ,

and i ∈ I is the timestamp. Then, we intend to identify a function

that can correctly score PD symptom severity. For this purpose, we

utilize a ranking-based idea, which leverages a Sigmoid function

[41] to achieve this scoring for a twofold reason. First, the Sigmoid

function can be implemented through a Sigmoid layer that has been

shown to lead to a good probability estimation. Second, the Sigmoid

function is diferentiable, which enables the backpropagation to

update weights. More details about theorem and proof can refer

to [36].

Problem Formulation: Given a pair of feature vectors with dif-

ferent timestamps, we adopt a function, called д(·), to map them to

a numeric value:
{

si = д(xi )

sj = д(x j )
. (1)

We deine Xi ≻ X j as the drug intake happens at a time between i

and j. Thus, the PD symptom at time i is more severe than that at

time j . These two outputs are then mapped to a learned probability

that xi should be ranked higher than x j via a Sigmoid function:

Pi j ≡ P(Xi ≻ X j ) ≡
1

1 + e−σ (si−sj )
, (2)

where σ determines the shape of this Sigmoid function.

Loss Function: With knowing the probability function, we adopt

the cross-entropy as a cost function to penalize the deviation of

model output probabilities from desired probabilities. let Pi j be a

known probability, we can formulate this cost function as:

L = −Pi j loдPi j − (1 − Pi j )loд(1 − Pi j ). (3)
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Figure 4: The drug efectiveness detection is achieved by our proposed ranking-basedmulti-view siamese neural network [35].

Convolutional layers and LSTM layers are adopted for feature extraction. Then, RankNet [36] is adopted to compare the

symptom severity at two diferent time. Weights in neural network are not shared among each view; while weights are shared

between two branches i and j.

Substituting Eq. (2) to Eq. (3) and calculating the gradient, we can

obtain:
∂C

∂si
= −

1

1 + esi−sj
. (4)

This gradient is then employed for weights updating during the

backpropagation.

4.4 Training and Inference

Our ranking-based multi-view siamese neural network has a difer-

ent architecture in training and inference phase, respectively (see

Fig. 5).

Training: The training architecture accepts two inputs. Given a

pair of inputs (i.e., xi and x j ), the output is a probability that symp-

tom at time i is more severe than that at time j . We label the inputs

with Si j ∈ {0,+1,−1}. Let Si j = 1, if symptom at time i is more

severe than at time j; while Si j = −1, if symptom at time j is more

severe than at time i . Moreover, Si j = 0 means symptom at time i

and j has a same level of severity. Referring to Section 2, the severity

relationship is deterministically known, where the łbefore drug

intakež is the most severe and the łafter drug intakež is the least

severe. Let Pi j =
1
2 (1 + Si j ). Combining the above formula with

Eq. (3), we have:

L =
1

2
(1 − Si j )σ (si − sj ) + loд(1 + e

−σ (si−sj )). (5)

Note that the cost is loд2 when si = sj , which means the model

tries to push it away from each other where data at two inputs are

from a diferent time. For patients with good drug efectiveness,

this pushing works well. However, this pushing is obstructed for

patients with poor drug efectiveness. The reason is that the difer-

ence of symptom severity between before and after drug intake is

small when a patient does not respond to drug well. In this case, si
is close to sj .

Inference: After pre-training our network on existing collected

data, the architecture accepts one input for inference. The output

is the score measuring symptom severity. Through calculating the

diference of symptom severity before and after drug intake, we

acquire the drug efectiveness.

When a drug loses its efectiveness, data collected from before

and after drug intake will have the same data representation. The

diference of symptom severity before and after drug intake, the

drug efectiveness, will be small.

Case Study:We use an example to better explain this procedure.

When xi is łbefore drug intakež and x j is łafter drug intakež, we let

Si j = 1 as we have no prior knowledge if drug works. In this case,

we have:

L1 = loд(1 + e
−(si−sj )). (6)

We set σ as 1 since it only controls the shape of a Sigmoid function.

The backpropogation allows the feature extractor to push away si
and sj from each other in order to minimize this loss function L1.

When xi and x j are both from łbefore drug intakež, we let Si j = 0

and the loss function will be:

L2 =
1

2
(si − sj ) + loд(1 + e

−(si−sj )). (7)

To minimize this loss function L2, the backpropogation will try to

make si and sj equal.

When drug works well, the data collected from before and after

drug intake will have diferent data representation. min L1 and

min L2 work well with this situation. However,min L1 andmin L2
compete with each other if drug loses its efectiveness. In this

case, the data collected from either before or after drug intake will

have the same data representation. Since weights in our proposed

network are shared between two branches, weights optimized for

L1 will not be suitable for L2.

5 BENCHMARK PREPARATION

In this section, we introduce the participant enrollment and system

implementation.
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Figure 5: Our proposed architecture accepts two and one in-

put in the training and inference phase, respectively.

5.1 Participant Enrollment

Our research is approved by theWestern Institutional Review Board

(IRB). During six months, more than hundreds of PD patients join

in this cohort study, and 81 of all participants (see Table 1) who

complete the collection of three activities are qualiied in PDLens.

From these participants, we collect 11668 voice activity samples,

11014walking activity samples, and 11014 standing activity samples,

respectively.

Moreover, each subject owns a healthcare provider (e.g., Neurol-

ogist and PD professionals) who advises the drug intake. Even so,

drug efectiveness varies from person to person. To measure this

drug efectiveness, we request each participant to take a standard

clinical drug efectiveness test to comprehensively evaluate the łof

timež in daily life (see Table 2). These questions belong to a part

of MDS-UPDRS [42], a standard clinical used rating tool to gauge

PD. We further employ the score to deine good and poor drug

efectiveness.

Characteristic Number

Age (Years), M (SD) 65.3 (6.0)

Time Since PD Onset, M (SD) 7.8 (4.5)

Time Since Medication Onset, M (SD) 4.0 (3.7)

Male, n (%) 52 (64.2)

Healthcare Provider, n (%) 81 (100)

High School Degree or Above, n (%) 81 (100)

Table 1: Demographic characteristics of enrolled PD partici-

pants (N = 81).

5.2 Deep Neural Network Implementation

We implement our deep neural network in PyTorch. Throughout

these experiments (see Section 6), we adopt stochastic gradient

descent with momentum (SGDM) as the optimizer with an initial

learning rate of 0.01. During training, data augmentation methods

are adopted, including random resize and crop, random horizontal

lip, and color jitter.

5.3 Smartphone Implementation

We convert our trained PyTorch model to an intermediate ONNX

(Open Neural Network Exchange) representation. The ONNX ile is

loaded into Cafe2, a scalable lightweight deep learning framework

[43]. From Cafe2, we export two protobuf (Google Protocol Bufer

[44]) models. One ile contains the input and parameters to the

model. The other ile guides run-time execution [45]. The advantage

of protobuf is that it is serialized and platform-neutral, allowing

for execution of the same model on both desktop and smartphone

platforms [44]. We then adopt a script from [46] to execute the

protobuf models on smartphone through Android Debug Bridge.

6 EVALUATION

In this section, we evaluate our system on the collected smartphone

dataset.

6.1 Overall Performance

We present the overall performance study. We will irst investigate

whether our system can diferentiate the conditions before and

after drug intake according to symptom severity. On this basis, we

further investigate whether our system can screen participants who

develop drug resistance.

Stage 1: Evaluation of Drug Response Detection

Experimental Goals: We expect to investigate the ability of PDLens

to diferentiate the conditions before and after drug intake.

Evaluation Metrics: We adopt a confusion matrix to describe the

classiication performance comprehensively. The irst row from left

to right is True Positive (TP) and False Positive (FP), separately;

the second row from left to right is False Negative (FN) and True

Negative (TN), separately. With this confusion matrix, we calculate

metrics such as accuracy = T P+T N
T P+T N+F P+FN , precision = T P

T P+F P ,

and recall = T P
T P+FN .

Ground Truth: We instruct our participants to take the experiments

and report the timestamps. These timestamps correspond to two

labels, which are łbefore drug intakež and łafter drug intakež, re-

spectively.

• łbefore drug intakež describes the timestamp when a partici-

pant does not take drug in a day, and the motor-symptom

becomes most severe in a day.

• łafter drug intakež describes the status when a participant

feels relieved after drug intake.

We adopt these reported labels as ground truth.

Person-dependent Results: We irst report our person-centered re-

sults. For each user, we adopt 80% of data for training, and the

remaining 20% of data is used for testing. Recall that our model is

not a classiication one, we adopt a least-square criterion to gener-

ate a threshold in the testing set. We predict a sample as łbefore

drug intakež if the output is higher than this threshold, whereas

predicting a sample as łafter drug intakež if the output is lower

than this threshold.

Fig. 6 shows the classiication performance on all enrolled par-

ticipants. The positive class is deined as łafter drug intakež. Our

system achieves 91.0% accuracy on average, suggesting that we can

well diferentiate stages between before and after drug intake. The
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Table 2: The standard clinical drug efectiveness test for łof timež rating. All questions come from MDS-UPDRS.

Questions Clinical Rating Scale

0 1 2 3 4

Over the past week, have you usually had problems with your speech?

Over the past week, have you usually had troubles handling your food and using eating utensils?

For example, do you have trouble handling inger foods or using forks, knives, spoons, chopsticks?

Over the past week, have you usually had problems dressing? For example, are you slow or do you

need help with buttoning, using zippers, putting on or taking of your clothes or jewelry?

Over the past week, have you usually been slow or do you need help with washing, bathing, shaving,

brushing teeth, combing your hair, or with other personal hygiene?

Over the past week, have people usually had trouble reading your handwriting?

Over the past week, have you usually had trouble doing your hobbies or other things that you like

to do?

Over the past week, do you usually have trouble turning over in bed?

Over the past week, have you usually had shaking or tremor?

Over the past week, have you usually had problems with balance and walking?

Over the past week, do you suddenly stop or freeze as if your feet are stuck to the loor?

ADI BDI

Ground Truth

ADI

BDI

P
re

d
ic

ti
o

n

4.1%

4.9%42.9%

48.1%

Figure 6: The average normalized confusion matrix of

person-centered result. ADI is short for after drug intake,

and BDI is short for before drug intake.

recall is close to precision, suggesting that we can diferentiate two

stages without obvious bias.

Person-independent Results:We further report the person-independent

results. We adopt a 20-fold leave-one-out validation. In each exper-

iment, we randomly select one participant as testing and train our

model on the remaining participants.

Fig. 7 shows that our system is capable of predicting the condi-

tions before and after drug intake with 70.0% accuracy. FP is lower

than FN, suggesting that our model more likely predict a sample

as łbefore drug intakež. This performance, however, is lower than

the person-centered model. Person-independent drug intake detec-

tion is essentially more challenging since drug efectiveness can

evolve diferent among diferent subjects due to various disease

progressions and medical prescriptions.

Stage 2: Evaluation of Drug Efectiveness Detection

Experimental Goals: On the basis of stage 1, we further investigate

the ability of PDLens to detect drug efectiveness. In particular, our

ADI BDI

Ground Truth

ADI

BDI

P
re

d
ic

ti
o

n

18.1%

11.7%35.5%

34.8%

Figure 7: The average normalized confusion matrix of

person-independent result. ADI is short for after drug in-

take, and BDI is short for before drug intake.

system should be able to screen patients who are becoming resistant

to current drug.

Evaluation Metrics: We compare the diference of symptom sever-

ity before and after drug intake to measure drug efectiveness. As

expected, a participant who responses to drug well exhibits a no-

ticeable diference in symptom severity between before and after

drug intake; while a participant who is resistant to drug exhibits a

non-obvious or even no diference.

Ground Truth: As shown in Table 2, we use a questionnaire to

test each participant the drug efectiveness. There are totally ten

questions, and each question is anchored with ive responses that

link to commonly accepted clinical terms : 0 = normal, 1 = slight, 2

= mild, 3 = moderate, and 4 = severe. These questions belong to the

MDS-UPDRS [42], which is a standard test to gauge PD conditions

in clinical medicine. Fig. 9 shows the CDF graph of score in standard

clinical drug efectiveness test on a total of 81 participants, where

the highest score is 21, the lowest score is 0, and the median value is
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Figure 8: A scatter plot of data on variable łscore in standard clinical drug efectiveness testž and łscore in PDLensž. Our result

reveals that the prediction of PDLens is correlated with the ground truth from the standard clinical drug efectiveness test.
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Figure 9: The CDF graph of score in standard clinical drug

efectiveness test. The highest score is 21 and lowest score is

0. The median value is 7.

7. Speciically, the higher score in this standard drug efectiveness

test indicates the poorer drug efectiveness.

Results: Fig. 8 identiies the correlation between the score in stan-

dard drug efectiveness test and that in PDLens. Although all the

patients respond to drug, the drug efectiveness varies from person

to person, where the highest score is 0.72, and the lowest score is

0.2. Moreover, the score predicted by PDLens is correlated to that

in standard drug efectiveness test with a Pearson correlation coef-

icient of -0.36. This result meets our expectation that a participant

with poorer drug will correspondingly receive a lower score in

PDLens.

We further observe that participants receiving a lower score

in the clinical test have a broader variation in drug efectiveness

detection. After checking into demographics, we ind out that most

of those participants are medication onset less than two years. For

those participants, the detection of PDLens can exist bias. The reason

is that when irst initializing medication, łon timež can last until the

due for the next dose of drug. Therefore, the diference of symptom

severity between before and after drug intake is negligible. We

further investigate that the Pearson correlation coeicient is -0.56

for participants who are medication onset for more than two years.

Since drug resistance usually appears later after medication onset

(e.g., after two years), PDLens can detect the occurrence of drug

resistance.

Considering that medication onset time does afect our detection,

we then investigate if prior knowledge of medication onset time can

assist PDLens to screen poor efectiveness participants. In particular,

we deine łgood drug efectivenessž if a participant averagely feels

no (0 = no) or very slight (1 = slight) uncomfortable, and deine

the remaining participants as łpoor drug efectivenessž. In Fig. 10,

the red dots mark the łgood drug efectivenessž and the green dots

mark the łpoor drug efectivenessž, respectively. This experiment

is conducted with a linear support vector machine (SVM) classiier.

We adopt a 10-fold hold-out validation. In each fold, we randomly

hold 15% data as validation. We achieve 74.4% accuracy on average.

The non-linear kernel is tried as well, but the improvement is not

obvious.

Our results (Fig. 8 and Fig. 10) reveal that PDLens can detect the

drug efectiveness of PD. That is, participants with poor drug efec-

tiveness receive a corresponding low score from PDLens. Although

detection can exist bias for PD patients who recently start drug

intake, our system can work as the irst line of defense to remind

them a clinic visit.

6.2 Understanding Roles of drug Efectiveness
Detector

In this section, we explore the roles of our model in detecting drug

efectiveness.

Roles of Ranking

Experimental Setup: We evaluate the role of ranking in PDLens.

As a baseline, we train a classiier with our CNN-RNN model as

the backbone for feature extraction and formulate the output as a
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Figure 11: A comparison of loss between diferent ranking

and classiication model.

binary classiication problem. Both ranker and classiier adopt the

same optimizer and learning rate (see Section 5.2).

Results: We ind that ranker achieves an average accuracy of 2.5%

higher than that of classiier. This result shows that the ranking

model converges better. For further exploration, we visualize the

training and testing loss between ranker and classiier, as shown

in Fig. 11. For the classiication model, the testing loss has a large

variation, and the overitting occurs at about the 100th epochs.

Instead, the ranking model has a small variation in testing loss, and

the overitting is not obvious. Note that when Si = Sj , the cost is

loд2, so the model incorporates a margin. That is, collected samples

with diferent labels, but receiving the same scores, are still pushed

away from each other. This mechanism, to some extent, prevents

overitting, thereby helps convergence better.

Roles of RNN

Experimental Setup:We adopt the t-SNE embedding [47] to visualize

the network response. In addition, we train a model by removing

LSTM layers as a baseline.

Results: We ind that overall accuracy decreases about 4.7% by re-

moving the LSTM layers. Take one participant for example. Fig. 12

visualizes the CNN and RNN response, and Fig. 13 compares its

performance. It shows that RNN augments the diferentiation of

two stages. The recall is 12% higher than the precision, suggesting

(a) (b)

Figure 12: A comparison of CNN and RNN response. The

model will more likely predict a sample as łafter drug in-

takež without LSTM layers.

Figure 13: The comparison of performance (i.e., accuracy,

precision, and recall) between with and without LSTM lay-

ers.

that the model more likely predict a collected sample as łafter drug

intakež without LSTM layers. This result also suggests that LSTM

layers do learn some temporal domain features that beneit drug

efectiveness detection.

6.3 System Overhead Analysis

In this section, we evaluate the footprint of our model on mobile

devices. Since this model is appropriate for daily-life usage, it should

own low resource cost and high eiciency.We implement our model

on two diferent types of smartphones employing Google’s Protocol

Bufers [44].

RunTimeMeasurement:We set up the batch size as 1. Tomeasure

the run time, we continuously run our model on a smartphone for

100 times and calculate the average value.

Battery Usage Measurement: We adopt AccuBattery [48], a tool

for real-time battery usage monitoring. We measure the rate of

battery usage before and after we start our model on a smartphone,

respectively, and calculate its diference.

Results: Table 3 shows the footprint of our model on two diferent

smartphones. Our model’s run time elapsing per iteration can be

lowered by using more capable smartphones. The run time per

iteration for Google Pixel 2 (2017) is 1770.88 ms, while the run time
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Phone

Brand

Average

Run Time

(ms)

Average

CPU (%)

Battery

Usage

(mA)

Pixel 2 1770.88 15.0 358

Galaxy S9 1200.87 14.0 488

Table 3: System overhead on diferent smartphones.

per iteration for Samsung Galaxy S9 (2018) is 1200.87 ms. However,

it seems that the superior performance of Galaxy S9 requires a

greater energy cost, as the rate of battery usage for Galaxy S9 is

488 mA, compared to 358 mA for Pixel 2. Yet, in terms of practical

battery cost in daily usage, this diference is not signiicant, as

explained below.

Assuming that drug intake happens three times a day, six iter-

ations of our model will run per day. The actual battery cost of

our model is negligible in daily usage. Pixel 2 is projected to use

1.06 mAh per day, less than 0.1% of its 2700 mAh battery. Similar to

Pixel 2, Galaxy S9 is projected to use 0.98 mAh per day, less than

0.1% of its 3000 mAh battery. Furthermore, both smartphones take

approximately one second to make an inference with the model,

which is a suicient speed to deliver real-time results to users.

7 PDLENS STABILITY STUDY

Although talking, walking, and standing are three everyday ac-

tivities that can be easily accessed, a smartphone may still miss

some activities in daily life, and we are responsible for exploring

the system performance in this situation. Despite requiring retrain-

ing model, this phase can be simultaneously inished during data

collection. For example, we can train multiple models in advance

and choose appropriate pre-trained models to deal with diferent

cases of missing data.

Same as described in Section 6.1, we evaluate both drug response

detection (stage 1) and drug efectiveness detection (stage 2) when

there exists only biomarker of voice, gait, and balance, respectively.

Experimental Setup:We separately train a model for each smart-

phone activity per participant. The hyper-parameter for training

is the same as we train a multi-view deep neural network. The

ground truth, as we described above, is the collected time (i.e., łbe-

fore drug intakež and łafter drug intakež) and the standard clinical

drug efectiveness test for łof timež rating.

Results: Fig. 14 compares the performance of detecting drug re-

sponse between each single smartphone activity and the multi-view

one. As expected, the ranking-based multi-view model achieves

the highest accuracy. In fact, we observe that our ranking-based

multi-view model can always achieve about 1 ∼ 2% accuracy than

the best case of single activity. Moreover, voice can achieve a higher

accuracy than gait and balance due to that vocal impairment is the

most widely existing PD symptom in all stages, and drug intake

can relieve this vocal impairment.

Table 4 reports the performance of drug efectiveness detection.

The irst column is the result on all participants, and the second

column describes the result on participants who start medication

multiview voice walking balance
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Figure 14: A comparison of accuracy between the activity

fusion and single activity. The central, the bottom and top

edges of the box marks the median, the 25th and 75th per-

centiles, respectively. Symbol ‘+’ marks the outliers.

Pearson Correlation

on All PD Patients

Multi-view -0.36

Voice -0.35

Gait -0.28

Balance -0.04

Table 4: Pearson correlation coeicient between score in

PDLens and score in standard clinical drug efectiveness test.

longer than two years. The balance, however, achieves almost no

correlation. One reason is that balance impairment is not obvious

for most PD patients until late stages. Thus, depending on balance

only to achieve drug efectiveness detection is not accurate enough.

8 IMPLICATION

In this section, we discuss the extension of PDLens, including passive

PD severity sensing and precise medicine.

Passive PD Severity Sensing: As a progressive neurodegenera-

tive disorder, PD causes signiicant physical impairment and de-

clined quality of life. Nowadays, PD management requests patients

to accept regular assessment and close monitoring of symptoms

for adjusting drug usage such as dosage and frequency. However,

this assessment in a clinic is subjective and clinical professionals

cannot continuously monitor the trajectory of symptom severity

between two clinic visits. As a smartphone-based sensing system,

PDLens shows the feasibility to monitor symptom severity via fus-

ing daily-life activities, such as putting a smartphone in the pocket

or recording the phone talk. We believe that an extension of PDLens

can work as a passive sensing system to continuously monitor the

symptom severity without extra physical and economic burden.

PrecisionMedicine: Current clinical professionals usually choose

the most prescribed PD drug. However, individual variability in

genes, symptom severity and physical condition result in difer-

ent therapeutic efect. This problem called precision medicine is a
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relatively new but signiicant topic in current healthcare. Clinical-

based approaches cannot track drug-induced symptom variation

in daily life. As a mobile system, PDLens shows the feasibility to

achieve this goal. Besides monitoring the symptom severity before

and after drug intake, PDLens can expand to monitor intra-day drug

metabolism. The collected data can assist clinical professionals to

optimize the prescription such as drug type, dosage and frequency.

9 DISCUSSION

We identify that smartphone can know drug efectiveness of Parkin-

son’s disease patients. Our system, PDLens, builds on the fact that

drug intake can relief motor symptoms. Through collecting daily-

life activities, such as voice, walking, and standing, before and

after drug intake, PDLens can quantify the diference of symptom

severity, thereby infer the drug efectiveness.

The observed phenomenon is consistent with previous studies

that smartphone can measure the symptom severity [49]. One dif-

ference is that most of existing work adopts a supervised learning-

based method. That is, the relationship of symptom severity among

patients should be known in advance. This method can require large

labour to label these relationships. Instead, our proposed method

might be more like an unsupervised learning method. The training

phase will not require the severity information from others.

Strengths of our study include the long follow-up period, both

before and after the drug intake across a total time of 6 months, as

well as large sample of PD patients and collected daily-life activities.

In addition, we leverage an AI-based solution in detecting symptom

severity, which allows us to examine the non-linear relationship

among features. This non-linear relationship might be missed in

conventional models (e.g., SVM algorithm). Moreover, the AI-based

solution enables automatic feature selection that rarely has been

done in conventional models.

PDLens marks a closer step towards drug efectiveness detec-

tion of PD in daily life. However, it exhibits some limitations. First,

the correlation between system output and score in drug efective

test is not very high. One reason comes from the diference be-

tween subjective and objective evaluation. The other reason is that

wearing-of phenomenon not always happens on every subject.

In this case, gap between before and after drug intake becomes

insigniicant.

Second, PDLens leverages a multi-model deep learning archi-

tecture to fuse multiple activities. However, it is challenging to

quantify how much one activity contributes. The reason is that

our deep learning architecture will nonlinearly map the input to

a latent space. That is diferent from conventional linear models

where the weights can be considered as the contribution. We leave

such considerations as extensions to our system.

10 RELATED WORK

Related work falls within two areas, including mobile health sys-

tems and Parkinson’s disease (PD) related research.

10.1 Mobile Health Systems

Mobile health (mHealth) is an emerging area of interest for re-

searchers in recent years [50ś61]. Stresssense [12] recognized stress

from the human voice using smartphones. Pho2 [62] measured the

blood oxygen level of a person with a built-in camera. iSleep [63]

leveraged embedded microphone to monitor events related to sleep

quality, such as snoring and body movement. Farhan et al. [64]

applied data from GPS and accelerometer of the smartphone to

perform depression screening. Healthaware [65] utilized the em-

bedded accelerometer to monitor daily physical activities and the

built-in camera to analyze food items to control obesity. SymDe-

tector [66] employed the built-in microphone to detect respiratory

symptoms, such as coughs, sniles, and sneezes. Some other work

focuses on medication management. Kalantarian et al. [67] utilized

the accelerometers and gyroscopes of a smartwatch to detect ges-

tures that can predict medication adherence, including opening pill

bottles. Bae et al. [68] adopted the built-in step counter, distance

tracker, andmotion sensor of a Fitbit to predict hospital readmission

for cancer patients post-surgery.

Our work utilizes the built-in sensors of a smartphone to collect

digital PD biomarkers from a user’s daily activity to augment drug

efectiveness detection of PD.

10.2 PD Related Research

In the past twenty years, understanding PD symptoms using mo-

bile sensors attracts tremendous attentions from researchers. These

studies include but not limit to gait assessment [69ś73], inger dex-

terity [74ś79], and vocal impairment [56, 80ś83]. Sharma et al. [84]

developed SPARK, which utilizes a smartphone and a smartwatch

to monitor dysfunctional speech, gait abnormalities, limb dyskine-

sia, and voice disorder. Arora et al. [23] developed a smartphone

application to detect and monitor multiple PD biomarkers. Zhan

et al. [49] proposed an objective measurement of PD severity and

tested construct validity. PDMove [85] achieved the medication ad-

herence monitoring through gait assessment using a smartphone.

PDLens is totally diferent from PDVocal [13] in following three

aspects. 1) The application is diferent. PDVocal expects to address

PD detection whereas PDLens aims to detect drug efectiveness for

patients with PD; 2) The data collection is diferent; PDVocal col-

lects data from both PD and non-PD people; while PDLens collects

data from only PD patients but data needs to be collected before

and after drug intake; 3) The sensing modality is diferent. PDVocal

adopts the built-in microphone to collect audio data only whereas

PDLens collects 3 types of activities using the built-in microphone,

accelerometer, and gyroscope.

Most existing work target PD diagnosis and screening. How-

ever, PDLens is the irst solution that augments drug efectiveness

detection using a smartphone.

11 CONCLUSIONS

In this paper, we present PDLens, the irst mobile health system

that utilizes everyday activity to augment drug efectiveness detec-

tion in daily life. It works by collection of digital PD biomarkers

through the built-in sensors, detection of symptom severity with a

customized deep neural network, and detection of drug efective-

ness. We believe that PDLens demonstrates a promising step in the

real-world deployment of a drug management mobile system in the

future.



PDLens: Smartphone Knows Drug Efectiveness among Parkinson’s via Daily-Life Activity Fusion MobiCom ’20, September 21ś25, 2020, London, United Kingdom

REFERENCES
[1] M. Parish, łThe pathophysiology and nursing care for parkinson’s disease,ž 2019.
[2] H.-C. Cheng, C. M. Ulane, and R. E. Burke, łClinical progression in parkinson

disease and the neurobiology of axons,ž Annals of neurology, vol. 67, no. 6, pp.
715ś725, 2010.

[3] T. C. Thannickal, Y.-Y. Lai, and J. M. Siegel, łHypocretin (orexin) cell loss in
parkinson’s disease,ž Brain, vol. 130, no. 6, pp. 1586ś1595, 2007.

[4] M. D. Yahr, R. C. Duvoisin, M. J. Schear, R. E. Barrett, andM.M. Hoehn, łTreatment
of parkinsonism with levodopa,ž Archives of neurology, vol. 21, no. 4, pp. 343ś354,
1969.

[5] R. Dhall and D. L. Kreitzman, łAdvances in levodopa therapy for parkinson
disease: review of rytary (carbidopa and levodopa) clinical eicacy and safety,ž
Neurology, vol. 86, no. 14 Supplement 1, pp. S13śS24, 2016.

[6] A. Haycox, C. Armand, S. Murteira, J. Cochran, and C. Francois, łCost efective-
ness of rasagiline and pramipexole as treatment strategies in early parkinson’s
disease in the uk setting,ž Drugs & aging, vol. 26, no. 9, pp. 791ś801, 2009.

[7] W. J. Mutch, I. Dingwall-Fordyce, A. W. Downie, J. G. Paterson, and S. K. Roy,
łParkinson’s disease in a scottish city.ž Br Med J (Clin Res Ed), vol. 292, no. 6519,
pp. 534ś536, 1986.

[8] A. Barbeau, łL-dopa therapy in parkinson’s disease: a critical review of nine
years’ experience,ž Canadian Medical Association Journal, vol. 101, no. 13, p. 59,
1969.

[9] R. Inzelberg, S. Kipervasser, and A. D. Korczyn, łAuditory hallucinations in
parkinson’s disease,ž Journal of Neurology, Neurosurgery & Psychiatry, vol. 64,
no. 4, pp. 533ś535, 1998.

[10] H. Narabayashi, F. Yokochi, and Y. Nakajima, łLevodopa-induced dyskinesia and
thalamotomy.ž Journal of Neurology, Neurosurgery & Psychiatry, vol. 47, no. 8, pp.
831ś839, 1984.

[11] W. M. McDonald, I. H. Richard, and M. R. DeLong, łPrevalence, etiology, and
treatment of depression in parkinson’s disease,ž Biological psychiatry, vol. 54,
no. 3, pp. 363ś375, 2003.

[12] H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T. Campbell,
D. Gatica-Perez, and T. Choudhury, łStresssense: Detecting stress in uncon-
strained acoustic environments using smartphones,ž in Proceedings of the 2012
ACM Conference on Ubiquitous Computing. ACM, 2012, pp. 351ś360.

[13] H. Zhang, C. Song, A. Wang, C. Xu, D. Li, and W. Xu, łPdvocal: Towards privacy-
preserving parkinson’s disease detection using non-speech body sounds,ž 2019.

[14] H. Bernheimer, W. Birkmayer, O. Hornykiewicz, K. Jellinger, and F. Seitelberger,
łBrain dopamine and the syndromes of parkinson and huntington clinical, mor-
phological and neurochemical correlations,ž Journal of the neurological sciences,
vol. 20, no. 4, pp. 415ś455, 1973.

[15] C. D. Marsden and J. Parkes, ł"On-of" efects in patients with parkinson’s disease
on chronic levodopa therapy,ž The Lancet, vol. 307, no. 7954, pp. 292ś296, 1976.

[16] G. U. Höglinger, P. Rizk, M. P. Muriel, C. Duyckaerts, W. H. Oertel, I. Caille,
and E. C. Hirsch, łDopamine depletion impairs precursor cell proliferation in
parkinson disease,ž Nature neuroscience, vol. 7, no. 7, p. 726, 2004.

[17] P. Svenningsson, E. Westman, C. Ballard, and D. Aarsland, łCognitive impairment
in patients with parkinson’s disease: diagnosis, biomarkers, and treatment,ž The
Lancet Neurology, vol. 11, no. 8, pp. 697ś707, 2012.

[18] H. Zhao, C. Wang, N. Zhao, W. Li, Z. Yang, X. Liu, W. Le, and X. Zhang, łPoten-
tial biomarkers of parkinson’s disease revealed by plasma metabolic proiling,ž
Journal of Chromatography B, vol. 1081, pp. 101ś108, 2018.

[19] J. Wang, J. G. Hoekstra, C. Zuo, T. J. Cook, and J. Zhang, łBiomarkers of parkin-
son’s disease: current status and future perspectives,žDrug discovery today, vol. 18,
no. 3-4, pp. 155ś162, 2013.

[20] T. M. Cutson, K. C. Laub, and M. Schenkman, łPharmacological and nonpharma-
cological interventions in the treatment of parkinson’s disease,ž Physical therapy,
vol. 75, no. 5, pp. 363ś373, 1995.

[21] J. Jankovic, łParkinson’s disease: clinical features and diagnosis,ž Journal of
Neurology, Neurosurgery & Psychiatry, vol. 79, no. 4, pp. 368ś376, 2008.

[22] P. M. C. Group et al., łLong-term efectiveness of dopamine agonists and
monoamine oxidase b inhibitors compared with levodopa as initial treatment for
parkinson’s disease (pd med): a large, open-label, pragmatic randomised trial,ž
The Lancet, vol. 384, no. 9949, pp. 1196ś1205, 2014.

[23] S. Arora, V. Venkataraman, A. Zhan, S. Donohue, K. Biglan, E. Dorsey, and
M. Little, łDetecting and monitoring the symptoms of parkinson’s disease using
smartphones: A pilot study,ž Parkinsonism & related disorders, vol. 21, no. 6, pp.
650ś653, 2015.

[24] W. Maetzler, J. Domingos, K. Srulijes, J. J. Ferreira, and B. R. Bloem, łQuantitative
wearable sensors for objective assessment of parkinson’s disease,ž Movement
Disorders, vol. 28, no. 12, pp. 1628ś1637, 2013.

[25] A. Tsanas,M. A. Little, P. E.McSharry, and L. O. Ramig, łNonlinear speech analysis
algorithms mapped to a standard metric achieve clinically useful quantiication
of average parkinson’s disease symptom severity,ž Journal of the royal society
interface, vol. 8, no. 59, pp. 842ś855, 2010.

[26] J. R. Dufy, Motor Speech Disorders-E-Book: Substrates, Diferential Diagnosis, and
Management. Elsevier Health Sciences, 2013.

[27] J. A.Whitield, C. Delong, A.M. Goberman, andM. Blomgren, łFluency adaptation
in speakers with parkinson disease: a motor learning perspective,ž International
journal of speech-language pathology, vol. 20, no. 7, pp. 699ś707, 2018.

[28] G. Yogev, N. Giladi, C. Peretz, S. Springer, E. S. Simon, and J. M. Hausdorf,
łDual tasking, gait rhythmicity, and parkinson’s disease: which aspects of gait
are attention demanding?ž European journal of neuroscience, vol. 22, no. 5, pp.
1248ś1256, 2005.

[29] B. R. Bloem, J. M. Hausdorf, J. E. Visser, and N. Giladi, łFalls and freezing of gait
in parkinson’s disease: a review of two interconnected, episodic phenomena,ž
Movement disorders: oicial journal of the Movement Disorder Society, vol. 19, no. 8,
pp. 871ś884, 2004.

[30] A. Schrag, M. Jahanshahi, and N. Quinn, łWhat contributes to quality of life
in patients with parkinson’s disease?ž Journal of Neurology, Neurosurgery &
Psychiatry, vol. 69, no. 3, pp. 308ś312, 2000.

[31] J. Sian, D. T. Dexter, A. J. Lees, S. Daniel, Y. Agid, F. Javoy-Agid, P. Jenner, and
C. D. Marsden, łAlterations in glutathione levels in parkinson’s disease and other
neurodegenerative disorders afecting basal ganglia,ž Annals of Neurology: Oicial
Journal of the American Neurological Association and the Child Neurology Society,
vol. 36, no. 3, pp. 348ś355, 1994.

[32] F. Blandini, G. Nappi, C. Tassorelli, and E. Martignoni, łFunctional changes of the
basal ganglia circuitry in parkinson’s disease,ž Progress in neurobiology, vol. 62,
no. 1, pp. 63ś88, 2000.

[33] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, łMulti-view convolutional
neural networks for 3d shape recognition,ž in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 945ś953.

[34] Q. Suo, F. Ma, Y. Yuan, M. Huai,W. Zhong, J. Gao, and A. Zhang, łDeep patient sim-
ilarity learning for personalized healthcare,ž IEEE transactions on nanobioscience,
vol. 17, no. 3, pp. 219ś227, 2018.

[35] S. Chopra, R. Hadsell, Y. LeCun, et al., łLearning a similarity metric discrimina-
tively, with application to face veriication,ž in CVPR (1), 2005, pp. 539ś546.

[36] C. J. Burges, łFrom ranknet to lambdarank to lambdamart: An overview,ž Learning,
vol. 11, no. 23-581, p. 81, 2010.

[37] K. He, X. Zhang, S. Ren, and J. Sun, łDeep residual learning for image recognition,ž
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770ś778.

[38] K. Gref, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber,
łLstm: A search space odyssey,ž IEEE transactions on neural networks and learning
systems, vol. 28, no. 10, pp. 2222ś2232, 2016.

[39] M. Zhao, S. Yue, D. Katabi, T. S. Jaakkola, and M. T. Bianchi, łLearning sleep
stages from radio signals: A conditional adversarial architecture,ž in International
Conference on Machine Learning, 2017, pp. 4100ś4109.

[40] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, and W. Geng, łA novel attention-
based hybrid cnn-rnn architecture for semg-based gesture recognition,ž PloS one,
vol. 13, no. 10, p. e0206049, 2018.

[41] J. Han and C. Moraga, łThe inluence of the sigmoid function parameters on
the speed of backpropagation learning,ž in International Workshop on Artiicial
Neural Networks. Springer, 1995, pp. 195ś201.

[42] C. G. Goetz, B. C. Tilley, S. R. Shaftman, G. T. Stebbins, S. Fahn, P. Martinez-
Martin, W. Poewe, C. Sampaio, M. B. Stern, R. Dodel, et al., łMovement disorder
society-sponsored revision of the uniied parkinson’s disease rating scale (mds-
updrs): Scale presentation and clinimetric testing results,ž Movement disorders,
vol. 23, no. 15, pp. 2129ś2170, 2008.

[43] łA new lightweight, modular, and scalable deep learning framework,ž https:
//research.fb.com/downloads/cafe2/, accessed 07/29/19.

[44] łProtocol bufers,ž https://developers.google.com/protocol-bufers/, accessed
08/06/19.

[45] łTransfering a model from pytorch to cafe2 and mobile using onnx,ž https:
//pytorch.org/tutorials/advanced/super_resolution_with_cafe2.html, accessed
08/06/19.

[46] łTransfering a model from pytorch to cafe2 and mobile using onnx,ž https:
//github.com/pytorch/pytorch/blob/master/binaries/speed_benchmark.cc, ac-
cessed 07/25/19.

[47] L. v. d. Maaten and G. Hinton, łVisualizing data using t-sne,ž Journal of machine
learning research, vol. 9, no. Nov, pp. 2579ś2605, 2008.

[48] łAccubattery,ž https://www.accubatteryapp.com/, accessed 08/01/19.
[49] A. Zhan, S. Mohan, C. Tarolli, R. B. Schneider, J. L. Adams, S. Sharma, M. J. Elson,

K. L. Spear, A. M. Glidden, M. A. Little, et al., łUsing smartphones and machine
learning to quantify parkinson disease severity: The mobile parkinson disease
score,ž JAMA neurology, 2018.

[50] K. Sha, G. Zhan,W. Shi, M. Lumley, C.Wiholm, and B. Arnetz, łSpa: a smart phone
assisted chronic illness self-management system with participatory sensing,ž in
Proceedings of the 2nd International Workshop on Systems and Networking Support
for Health Care and Assisted Living Environments. ACM, 2008, p. 5.

[51] T. Denning, A. Andrew, R. Chaudhri, C. Hartung, J. Lester, G. Borriello, and
G. Duncan, łBalance: towards a usable pervasive wellness application with accu-
rate activity inference,ž in Proceedings of the 10th workshop on Mobile Computing
Systems and Applications. ACM, 2009, p. 5.

https://research.fb.com/downloads/caffe2/
https://research.fb.com/downloads/caffe2/
https://developers.google.com/protocol-buffers/
https://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html
https://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html
https://github.com/pytorch/pytorch/blob/master/binaries/speed_benchmark.cc
https://github.com/pytorch/pytorch/blob/master/binaries/speed_benchmark.cc
https://www.accubatteryapp.com/


MobiCom ’20, September 21ś25, 2020, London, United Kingdom Zhang et al.

[52] N. Oliver and F. Flores-Mangas, łHealthgear: Automatic sleep apnea detection
and monitoring with a mobile phone.ž JCM, vol. 2, no. 2, pp. 1ś9, 2007.

[53] Z. Jin, J. Oresko, S. Huang, and A. C. Cheng, łHearttogo: a personalized medicine
technology for cardiovascular disease prevention and detection,ž in Life Science
Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH. IEEE, 2009, pp.
80ś83.

[54] O. Akinbode, O. Longe, and B. Amosa, łMobile-phone based patient compli-
ance system for chronic illness care in nigeria,ž Journal of Computer Science &
Technology, vol. 12, 2012.

[55] F. Lin, J. Ajay, J. Langan, L. Cavuoto, I. Nwogu, H. Subryan, and W. Xu, łQm-
forms: A portable and cost-efective upper extremity rehabilitation system,ž Smart
Health, vol. 14, p. 100080, 2019.

[56] H. Zhang, A. Wang, D. Li, and W. Xu, łDeepvoice: A voiceprint-based mobile
health framework for parkinson’s disease identiication,ž in Biomedical & Health
Informatics (BHI), 2018 IEEE EMBS International Conference on. IEEE, 2018, pp.
214ś217.

[57] C. Song, A. Wang, F. Lin, M. Asmani, R. Zhao, Z. Jin, J. Xiao, and W. Xu, łTempo-
spatial compressed sensing of organ-on-a-chip for pervasive health,ž IEEE journal
of biomedical and health informatics, vol. 22, no. 2, pp. 325ś334, 2017.

[58] F. Lin, C. Song, X. Xu, L. Cavuoto, and W. Xu, łPatient handling activity recogni-
tion through pressure-map manifold learning using a footwear sensor,ž Smart
Health, vol. 1, pp. 77ś92, 2017.

[59] F. Lin, A. Wang, L. Cavuoto, and W. Xu, łToward unobtrusive patient handling
activity recognition for injury reduction among at-risk caregivers,ž IEEE Journal
of biomedical and health informatics, vol. 21, no. 3, pp. 682ś695, 2016.

[60] J. Castner, K. Klingman, S. Sullivan, W. Xu, and A. Titus, łHitting home with
technology development for asthma,ž The Lancet Respiratory Medicine, vol. 4,
no. 2, pp. 102ś103, 2016.

[61] J. Ajay, C. Song, A. Wang, J. Langan, Z. Li, and W. Xu, łA pervasive and sensor-
free deep learning system for parkinsonian gait analysis,ž in Biomedical & Health
Informatics (BHI), 2018 IEEE EMBS International Conference on. IEEE, 2018, pp.
108ś111.

[62] N. Bui, A. Nguyen, P. Nguyen, H. Truong, A. Ashok, T. Dinh, R. Deterding, and
T. Vu, łPho2: Smartphone based blood oxygen level measurement systems using
near-ir and red wave-guided light,ž in Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems. ACM, 2017, p. 26.

[63] T. Hao, G. Xing, and G. Zhou, łisleep: unobtrusive sleep quality monitoring using
smartphones,ž in Proceedings of the 11th ACM Conference on Embedded Networked
Sensor Systems. ACM, 2013, p. 4.

[64] A. A. Farhan, C. Yue, R. Morillo, S. Ware, J. Lu, J. Bi, J. Kamath, A. Russell,
A. Bamis, and B. Wang, łBehavior vs. introspection: reining prediction of clinical
depression via smartphone sensing data.ž inWireless Health, 2016, pp. 30ś37.

[65] C. Gao, F. Kong, and J. Tan, łHealthaware: Tackling obesity with health aware
smart phone systems,ž in Robotics and Biomimetics (ROBIO), 2009 IEEE Interna-
tional Conference on. Ieee, 2009, pp. 1549ś1554.

[66] X. Sun, Z. Lu, W. Hu, and G. Cao, łSymdetector: Detecting sound-related respira-
tory symptoms using smartphones,ž in Proceedings of the 2015 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, 2015, pp. 97ś108.

[67] H. Kalantarian, N. Alshurafa, and M. Sarrafzadeh, łDetection of gestures associ-
ated with medication adherence using smartwatch-based inertial sensors,ž IEEE
Sensors Journal, vol. 16, no. 4, pp. 1054ś1061, 2016.

[68] S. Bae, A. K. Dey, and C. A. Low, łUsing passively collected sedentary behavior
to predict hospital readmission,ž in Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 616ś621.

[69] S. T. Moore, H. G. MacDougall, and W. G. Ondo, łAmbulatory monitoring of
freezing of gait in parkinson’s disease,ž Journal of neuroscience methods, vol. 167,
no. 2, pp. 340ś348, 2008.

[70] S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Troster, M. Plotnik, and J. M.
Hausdorf, łOnline detection of freezing of gait with smartphones and machine
learning techniques,ž in Pervasive Computing Technologies for Healthcare (Perva-
siveHealth), 2012 6th International Conference on. IEEE, 2012, pp. 123ś130.

[71] K. Wang, B. Li, D. Gu, K. Dai, and L. Zhou, łA smartphone based system for
freezing of gait monitoring for parkinson’s disease patients,ž in Communication
Software and Networks (ICCSN), 2017 IEEE 9th International Conference on. IEEE,
2017, pp. 1529ś1533.

[72] L. Pepa, F. Verdini, M. Capecci, and M. Ceravolo, łSmartphone based freezing of
gait detection for parkinsonian patients,ž in Consumer Electronics (ICCE), 2015
IEEE International Conference on. IEEE, 2015, pp. 212ś215.

[73] H. Kim, H. J. Lee, W. Lee, S. Kwon, S. K. Kim, H. S. Jeon, H. Park, C. W. Shin, W. J.
Yi, B. S. Jeon, et al., łUnconstrained detection of freezing of gait in parkinson’s
disease patients using smartphone,ž in Engineering in Medicine and Biology Society
(EMBC), 2015 37th Annual International Conference of the IEEE. IEEE, 2015, pp.
3751ś3754.

[74] C. D. Wurster, H. Graf, H. Ackermann, K. Groth, J. Kassubek, and A. Riecker,
łNeural correlates of rate-dependent inger-tapping in parkinson’s disease,ž Brain
Structure and Function, vol. 220, no. 3, pp. 1637ś1648, 2015.

[75] A. H. Butt, E. Rovini, D. Esposito, G. Rossi, C. Maremmani, and F. Cavallo, łBiome-
chanical parameter assessment for classiication of parkinson’s disease on clini-
cal scale,ž International Journal of Distributed Sensor Networks, vol. 13, no. 5, p.
1550147717707417, 2017.

[76] B. M. Eskoier, S. I. Lee, J.-F. Daneault, F. N. Golabchi, G. Ferreira-Carvalho,
G. Vergara-Diaz, S. Sapienza, G. Costante, J. Klucken, T. Kautz, et al., łRecent
machine learning advancements in sensor-based mobility analysis: Deep learning
for parkinson’s disease assessment,ž in Engineering inMedicine and Biology Society
(EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, 2016, pp.
655ś658.

[77] A. Bermeo, M. Bravo, M. Huerta, and A. Soto, łA system to monitor tremors in
patients with parkinson’s disease,ž in Engineering in Medicine and Biology Society
(EMBC), 2016 IEEE 38th Annual International Conference of the. IEEE, 2016, pp.
5007ś5010.

[78] B. P. Printy, L. M. Renken, J. P. Herrmann, I. Lee, B. Johnson, E. Knight, G. Varga,
and D. Whitmer, łSmartphone application for classiication of motor impairment
severity in parkinson’s disease,ž in Engineering in Medicine and Biology Society
(EMBC), 2014 36th Annual International Conference of the IEEE. IEEE, 2014, pp.
2686ś2689.

[79] G. Figueras, V. Parra, M. Huerta, A. Marzinotto, R. Clotet, R. González, A. Moreno,
K. Pinto, D. Rivas, R. Alvizu, et al., łSmartphone application for quantitative
measurement of parkinson tremors,ž in VI Latin American Congress on Biomedical
Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. Springer,
2015, pp. 785ś788.

[80] M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, L. O. Ramig, et al., łSuitability
of dysphonia measurements for telemonitoring of parkinson’s disease,ž IEEE
transactions on biomedical engineering, vol. 56, no. 4, pp. 1015ś1022, 2009.

[81] B. E. Sakar, M. E. Isenkul, C. O. Sakar, A. Sertbas, F. Gurgen, S. Delil, H. Apaydin,
and O. Kursun, łCollection and analysis of a parkinson speech dataset with multi-
ple types of sound recordings,ž IEEE Journal of Biomedical and Health Informatics,
vol. 17, no. 4, pp. 828ś834, 2013.

[82] L. Jeancolas, H. Benali, B.-E. Benkelfat, G. Mangone, J.-C. Corvol, M. Vidailhet,
S. Lehericy, and D. Petrovska-Delacrétaz, łAutomatic detection of early stages of
parkinson’s disease through acoustic voice analysis with mel-frequency cepstral
coeicients,ž in Advanced Technologies for Signal and Image Processing (ATSIP),
2017 International Conference on. IEEE, 2017, pp. 1ś6.

[83] A. H. P. Alavijeh, Y. P. Raykov, R. Badawy, J. Jensen, M. G. Christensen, and M. A.
Little, łQuality control of voice recordings in remote parkinson’s disease moni-
toring using the ininite hidden markov model,ž in Ieee International Conference
on Acoustics, Speech and Signal Processing (icassp). IEEE, 2019.

[84] V. Sharma, K. Mankodiya, F. De La Torre, A. Zhang, N. Ryan, T. G. Ton, R. Gandhi,
and S. Jain, łSpark: personalized parkinson disease interventions through synergy
between a smartphone and a smartwatch,ž in International Conference of Design,
User Experience, and Usability. Springer, 2014, pp. 103ś114.

[85] H. Zhang, C. Xu, H. Li, S. A. Rathore, Z. Yan, D. Li, F. Lin, K. Wang, and W. Xu,
łPdmove: Towards passive medication adherence monitoring of parkinson’s dis-
ease using smartphone-based gait assessment,ž Proceedings of the ACM on inter-
active, mobile, wearable and ubiquitous technologies, vol. 3, no. 3, 2019.


	Abstract
	1 Introduction
	2 background
	2.1 PD Rationale and Symptoms
	2.2 PD Treatment
	2.3 PD Biomarkers and Smartphone Activities

	3 PDLens Overview
	3.1 Application Scenario
	3.2 Protocol

	4 drug Effectiveness Detector
	4.1 Design Consideration
	4.2 Feature Extractor
	4.3 Motor-symptom Scorer
	4.4 Training and Inference

	5 Benchmark Preparation
	5.1 Participant Enrollment
	5.2 Deep Neural Network Implementation
	5.3 Smartphone Implementation

	6 Evaluation
	6.1 Overall Performance
	6.2 Understanding Roles of drug Effectiveness Detector
	6.3 System Overhead Analysis

	7 PDLens stability Study
	8 Implication
	9 Discussion
	10 Related Work
	10.1 Mobile Health Systems
	10.2 PD Related Research

	11 Conclusions
	References

