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Abstract—Quality of sleep is an important indicator of health
and well being. Recent developments in the field of in-home sleep
monitoring have the potential to enhance a person’s sleeping ex-
perience and contribute to an overall sense of well being. Existing
in-home sleep monitoring devices either fail to provide adequate
sleep information or are obtrusive to use. To overcome these
obstacles, a noncontact and cost-effective sleep monitoring system,
named SleepSense, is proposed for continuous recognition of the
sleep status, including on-bed movement, bed exit, and breathing
section. SleepSense consists of three parts: a Doppler radar-based
sensor, a robust automated radar demodulation module, and a
sleep status recognition framework. Herein, several time-domain
and frequency-domain features are extracted for the sleep recogni-
tion framework. A prototype of SleepSense is presented and eval-
uated using two sets of experiments. In the short-term controlled
experiment, the SleepSense achieves an overall 95.1% accuracy
rate in identifying various sleep status. In the 75-minute sleep
study, SleepSense demonstrates wide usability in real life. The
error rate for breathing rate extraction in this study is only 6.65%.
These experimental results indicate that SleepSense is an effective
and promising solution for in-home sleep monitoring.

Index Terms—Evaluation, non-contact sensing, sleep monitoring.

I. INTRODUCTION

QUALITY of sleep has a great impact on human health.
There is a growing recognition of the adverse effects from

poor sleep quality and sleep disorders. Patients with sleep dis-
orders are prone to suffer from chronic diseases such as obesity,
diabetes, and hypertension. Vorona et al. [2] demonstrated the
relationship between obesity and sleep time. Spiegel et al. [3]
showed that sleep loss increases the risk for diabetes and
obesity. Brooks et al. [4] presented that obstructive sleep apnea
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(OSA) is a risk factor for systemic hypertension. Moreover,
people are usually not aware of sleep disorders because they
happen during sleep. It has became a chronic, under-explored
but critical health challenge in modern life [5].

To date, there are several methods to perform sleep moni-
toring such as polysomnography (PSG) [6], ballistocardiogram
[7], photoplethysmography [8] and actigraphy [9]. The PSG
is still the primary and the most objective sleep assessment
method in clinical use, such as insomnia diagnosis [10]. The
PSG can provide fine-grained information for sleep monitoring,
thus offering more accurate sleep assessment results. Another
common alternative sleeping estimation method is actigraphy,
including an accelerometer and a memory storage chip, which
can provide information on movements during sleep [11]. Sev-
eral commercial off-the-shelf (COTS) actigraphy based prod-
ucts, such as Sleep Tracker [12], Fitbit [13], and Sleep Cycle
[14], are publicly available. The competitive advantage of this
method is that it is convenient to deploy and inexpensive.
Recent research suggests the need for new sleep monitoring
approaches and methods. For example, Rofouei et al. [15]
presented a non-invasive wearable neck-cuff system for sleep
monitoring. The system can also visualize the physiological
measurements in real time. Wang et al. [16] developed a real-
time infrared-based video system to detect abnormal breathing
pattern for diagnosis of sleep apnea. Hao et al. [17] presented
a sleep quality monitoring system using an off-the-shelf smart-
phone. This lightweight system employs a built-in microphone
and an accelerometer to determine sleep profiles. Liu et al. [18]
designed a non-invasive pressure-sensitive bedsheet to monitor
different sleep postures. The generated high-resolution pressure
maps can be further utilized for sleep monitoring. Nevertheless,
current monitoring methods suffer from several drawbacks,
such as obtrusiveness [10], [15], lack of privacy [16], [17], and
high-cost [10], [18]. These limitations prevent people from
using current sleep monitoring systems on a daily basis.

To address the above challenges, we propose the SleepSense,
a Doppler radar-based sleep monitoring system, which is non-
contact and cost-effective. Our goal of this work is to monitor
and classify the sleep-related events by detecting the on-bed
movement activities during sleep based on the radar signal,
without including sleep-wake classification. The Doppler radar
sensor is a specialized radar that can measure target displace-
ment remotely by using the Doppler effect [19] and has been
employed in various motion detection applications, such as gait
assessment, vital signal detection, human detection, and hand
gesture recognition. Wang et al. [20] developed an in-home
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gait assessment for older adults to reduce the fall risk based
on Doppler radar. Lee et al. [21] demonstrated the capa-
bility of Doppler radar in capturing the breathing signals.
Zheng et al. [22] proposed a Doppler radar-based hand gesture
recognition system. Kim et al. [23] proposed a Doppler radar-
based human detection system. Gu et al. [24] built a Doppler
radar for noncontact vital sign detection. There also exist sim-
ilar methods to Doppler radar by using ultrawideband (UWB)
radar [25]–[27] for motion detection on the bed and for respira-
tory rate monitoring. In our study, we design and implement a
Doppler radar sensor using commercial off-the-shelf (COTS)
components, which are able to accurately capture the sleep-
related signal. Then, the sampled baseband radar signal goes
through a demodulation module that uses the extended differen-
tiate and cross multiple (DACM) algorithm to obtain the body
movement information from sleep status. Moreover, the sleep
status recognition framework processes the displacement signal
and recognizes three sleep status1 stages, i.e., on-bed move-
ment, bed exit, and breathing section. Meanwhile, the breathing
rate is extracted via a novel breathing rate extracting algorithm.
Finally, the system is evaluated by a set of real-case studies.
Specifically, in our short-term controlled study, SleepSense
demonstrates a promising recognition rate for breathing sec-
tion, on-bed movement, and bed exit detection. Our 75-minute
sleep study demonstrates the wide usability of SleepSense. The
contribution of our work is summarized as follows:

• Developed a noncontact sleep monitoring system using a
COTS-based Doppler radar sensor, which can capture the
movement and breathing signal precisely. We validated
the captured movement signal using the ground truth sig-
nal provided by the accelerometer and the breathing signal
using the ground truth signal provided by the airflow
sensor;

• Designed a new sleep status recognition framework. In
this framework, it performs the signal segmentation, time-
domain and frequent-domain features extraction, and
sleep status detection, including on-bed movement, bed
exit, and breathing section.

• Performed a short-term controlled study and a 75-minute
sleep study to evaluate the performance and usabil-
ity of SleepSense. In the short-term controlled study,
SleepSense was able to distinguish the recall rate for
breathing section, on-bed movement, and bed exit detec-
tion, which is 99.3%, 86.1%, and 70.0%, respectively.
In the 75-minute sleep study, we also performed the
sleep status classification, then compared the extracted
breathing rate via SleepSense with the ground truth signal
provided by the airflow sensor. The error rate was only
6.65%.

The remaining sections of this paper are organized as fol-
lows: Section II discusses the design considerations and chal-
lenges for SleepSense. Section III elaborates the COTS-based
Doppler radar sensor system design. In Section IV, we propose

1We emphasize “sleep status” to differentiate the “sleep stage” defined in the
clinics.

a sleep status recognition framework to locate the on-bed move-
ment, bed exit, and breathing section. Furthermore, a novel
peak detection algorithm is proposed to calculate the breathing
rate. In Section V, we perform two sets of experiments to
evaluate the SleepSense in the short-term and 75-minute sleep
study. Section VI discusses interesting findings and system lim-
itations. Finally, Section VII concludes the paper and describes
future work.

II. DESIGN CONSIDERATIONS

A. Design Challenges

There are more than 12 million people suffering from ob-
structive sleep apnea and about 40 million people with insomnia
and chronic sleep disorders in U.S. [28]. Technologies offer
a number of sleep monitoring systems for sleep disorder di-
agnostics and treatment. We address the challenges for sleep
monitoring system design.

1) Unobtrusiveness: The sleep monitoring system should be
unobtrusive because the subjects feel nervous or uncomfortable
when they are monitored physically. In the obstructive sleep
monitoring methods, such as PSG and actigraphy, the user has
to wear the sensors or the sensors have to be attached. Conse-
quently, the uncomfortable feeling of wearing these sensors or
devices may cause the subject to have difficulty either falling
asleep or maintaining sleep.

2) Privacy: The sleep monitoring system should protect
the patient’s privacy. The patient privacy should be strictly
protected because it gains increasingly significance recently,
especially when it comes to the sleep, an extremely personal
topic. Recording raw video and audio signal raise patient con-
cerns about privacy.

3) Cost-Effective Implementation: The sleep monitoring
system should be cost-effective. An affordable sleep monitoring
method can reach more people and help them perform sleep
quality assessments and potentially identify disorders at the
earliest stage, thereby reducing a patient’s financial burden in
the long term.

To address the aforementioned challenges, the proposed
sleep monitoring system employs a Doppler radar sensor to
capture the sleep status in a noncontact way. Our method
also performs all the sleep-related data processes in a local
embedded computer. Other unrelated sleep information will be
screened and removed before uploading to a server. Therefore,
the implemented sleep monitoring system can truly protect
individual privacy. Furthermore, the implementation is cost-
effective because the Doppler radar sensor is built on several
COTS-based components.

B. Sleep Status of Interest

Sleep, a combination of physiologic and behavioral
processes, is a period of inactivity and rejuvenation [29]. During
sleep, breathing patterns and movement patterns are of par-
ticular interest as they convey important information about a
person’s sleep state [30], [31] and are closely associated with
sleep quality. On the basis of breathing patterns and movement
patterns, we define three sleep statuses: on-bed movement
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Fig. 1. The function block diagram of Sleepsense system. (1) Doppler radar sensor. (2) Radar signal demodulation. (3) Sleep status recognition framework.

event, bed exit event, and breathing section. We focus on event
recognition when people are already in the sleep state. The on-
bed movement event is a movement such as turn over or arm
trembling. The breathing section is when a subject is still on
the bed (no observable body movements). The bed exit event
refers to the bed exit movement that indicates interruption of
the sleeping state. Successful recognition of these three sleep
status states is the basis for obtaining breathing and movement
distribution patterns.

III. COTS-BASED DOPPLER RADAR

SENSOR SYSTEM DESIGN

A. System Overview

SleepSense is a noncontact and cost-effective sleep moni-
toring system that continuously detects the sleep-related sta-
tus and obtains the breathing rate. Fig. 1 shows the overall
system architecture of SleepSense. First, the Doppler radar
sensor captures the sleep-related signal from the subject and
outputs the baseband signal I/Q. Then, the demodulation layer
employs an extended DACM demodulation algorithm to ob-
tain the displacement signal x(t). The sleep status recognition
framework, finally, extracts the sleep status-related features
from the displacement signal x(t) and classifies the sleep status.
In the meantime, a novel breathing rate extraction algorithm
calculates the respiration rate. Specifically, three layers are
introduced here:

1) Radar Sensor Hardware Layer: The Doppler radar sensor
can be used for human motion detection. Specifically, the radar
sensor generates a single-tone carrier signal which is transmit-
ted to the subject. Once the microwave reaches the position of
subject, the chest wall or body displacement will be modulated
into the phase shift in the microwave reflection. The phase
shift includes both movement and respiration information. This
phase shift is proportional to the corresponding movement dis-
placement. By demodulating this phase information properly,
we can obtain the movement displacement signal.

2) Radar Signal Demodulation Layer: The radar signal
demodulation layer handles the baseband radar I/Q signal,
which contains the target displacement information. In order to
acquire the displacement information, we employ an extended
DACM algorithm to demodulate the baseband signal. Then,
the displacement signal x(t) is transmitted to the sleep status
recognition framework for further processing.

3) Sleep Status Recognition Framework Layer: The sleep
status recognition framework performs further signal process-

Fig. 2. The Doppler radar sensor and its function block diagram.
(a) The Doppler radar sensor and NI-USB 6008 data acquisition device.
(b) The function block diagram of Doppler radar sensor.

ing on the displacement signal x(t). Specifically, the sleep
status recognition layer frames the x(t) into short segments and
extracts the multiple time and frequency-domain features for
each segment. Then, based on these features, the status detector
categorizes these segments into three classifications: breathing
section, on-bed movement, or bed exit. The status detector is a
decision-tree based classifier. Based on the classification result,
this layer also uses a breathing rate extracting algorithm to
calculate the breathing rate when the subject has no gross body
movements.

B. Doppler Radar Sensor Hardware Design

The purpose of our proposed system is to perform sleep
monitoring in a remote and cost-effective manner. This aim is
achieved by using a Doppler radar sensor. For several decades,
Doppler radar sensors have detected human vital signs, such
as respiration and heartbeat. Studies [32]–[34] have reported
progress in sensing vital signs. Doppler radar-based biomotion
sensors are used for sleep monitoring [35] and sleep/wake
measurement [36]. There are also commercial sleep monitoring
products [37], [38] based on Doppler radar from Resmed, in
which they adopt the linear demodulation. In our case, we
design and build this sensor based on the COTS components,
which can also sense human motions. Fig. 2 shows the hardware
system and its function block diagram. The Doppler radar
sensor adopts direct-conversion radar architecture to capture the
subject movement and breathing signal. In the circuit imple-
mentation, as shown in Fig. 2(b), the VCO in the transmitter
generates a carrier signal at 2.4 GHz. The VCO also provides
local oscillate (LO) to the mixer in the receiver chain. The
output power of this transmitter is less than 0.01 dBm. A low
noise amplifier (LNA), a band pass filter (BPF), a gain block, a
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Fig. 3. The principle of Doppler radar sensor for human motion detection.

balun, a mixer and two baseband operational amplifiers (OPs)
form the receiver chain. The LNA amplifies the received signal
at 2.4 GHz. The interferences with frequencies outside the
2.4 GHz band is removed by the BPF. A gain block is adopted
to further amplify the received signal. Two OPs with the same
gain of 40 dB are used to amplify the down-converted I(t) and
Q(t) baseband signals [39]. Lastly, for simplicity, we employ an
NI Data Acquisition device (DAQ), NI USB-6008, to digitize
the baseband I(t) and Q(t) signals. This NI DAQ device can
be replaced by any other DAQ devices or self-customized DAQ
device to reduce the implementation cost.

C. Radar Sensor Signal Demodulation

The baseband signal demodulation requires an understanding
of Doppler radar theory. Fig. 3 briefly illustrates basic Doppler
theory. The Doppler radar sensor transmits the continuous-wave
signal T (t)

T (t) = AT cos (ωt+ φ(t)) . (1)

Then, the transmission wave is received as R(t)

R(t) = AR cos

[
ωt− 4πd0

λ
− 4πx(t)

λ
+ φ

(
t− 2d0

c

)]
(2)

where A is the amplitude. ω represents the angular velocity.
φ(t) is the time-varying phase. λ is the wavelength. c is the
speed of light. d0 is distance between the Doppler radar and the
subject. x(t) denotes the time-varying displacement caused by
sleep related status.

The R(t) then generates two baseband signals including I(t)
and Q(t). I(t) is the in-phase signal

I(t) = AI cos

[
4πx(t)

λ
+

4πd0
λ

− φ

(
t− 2d0

c

)]
+ DCI (3)

Q(t) is the quadrature signal

Q(t)=AQ sin

[
4πx(t)

λ
+
4πd0
λ

−φ

(
t− 2d0

c

)
+φ0)

]
+DCQ

(4)

Fig. 4. (a) Baseband radar I/Q signal. (b) Corresponding demodulated
signal x(t).

where AI is the amplitude of the in-phase signal. AQ is the
amplitude of the quadrature signal. φ0 is the phase offset
between I(t) and Q(t). DCI and DCQ are the DC offsets in
I/Q channels, respectively.

The NI USB-6008 samples the baseband radar signals, I(t)
and Q(t), at 100 Hz. An example of acquired baseband radar
I/Q signals for several breathing sections is shown in Fig. 4(a).

In our work, for simplicity, we neglect the constant phase
offset, 4πd0/λ+ φ(t − 2d0/c), in (3) and (4). Assuming that
the gain imbalance is 1 (the ratio of AI and AQ is 1), and phase
imbalance (φ0) is 0. Therefore, (3) and (4) can be described as⎧⎨⎩I(t) = A0 cos

(
4πx(t)

λ

)
+ DCI

Q(t) = A0 sin
(

4πx(t)
λ

)
+ DCQ.

(5)

According to trigonometric identities, (5) can be trans-
formed into(

I(t)− DCI

A0

)2

+

(
Q(t)− DCQ

A0

)2

= 1. (6)

Therefore, the samples of I/Q channels stay on a circle whose
center is (DCI ,DCQ) with a radius of A0.

The least squares optimizations [34], then, is employed to
obtain the circle and identify the three unknown parameters:
DCI , DCQ, and A0.

After identifying the DC component offsets, the arctangent
demodulation method can derive the displacement signal x(t)
by solving the arctangent function in (7)

x(t) = arctan

(
Q(t)− DCQ

I(t)− DCI

)
× 4π

λ
. (7)

However, the arctangent demodulation method suffers from
the phase discontinuity issue or phase wrapping issue when the
movement is in large scale motion

ω(t) =
d
dt

(
arctan

Q(t)

I(t)

)
. (8)
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Specifically, when the demodulation exceeds the native
codomain range ((−π)/2, π/2) of the arctangent function, a
discontinuity problem will occur and the demodulation results
will be inaccurate. The original DACM algorithm in (8) could
be applied to avoid such a discontinuity problem. It is a deriva-
tive to the arctangent function and could be written as (8). The
calculation of w(t), however, is very sensitive to noise in the
traditional DACM algorithm. Thus, in this paper, an extended
DACM algorithm proposed by Wang et al. [40] is adopted.
Here, Φ(t) is defined as

Φ(t) =
4πx(t)

λ
+

4πd0
λ

+ φ

(
t− 2d0

c

)
(9)

which is the part inside cosine function in (3). Since the phase
offset 4πd0/λ+ φ(t− 2d0/c) is constant, once Φ(t) is ob-
tained, x(t) can be directly retrieved. In the digital domain, the
procedure of differentiation is usually approximated by forward
difference, so the extended DACM algorithm can be formulated
in a discrete form, as shown in (10), which adds an integration
procedure to retrieve the phase information and suppress the
noise caused by the differentiator in the meantime

Φ[n]=

n∑
k=2

I[k] {Q[k]−Q[k − 1]} − {I[k]− I[k − 1]}Q[k]

I[k]2 +Q[k]2
.

(10)

Fig. 4(b) shows a demodulated signal using this extended
DACM algorithm.

IV. SLEEP STATUS RECOGNITION FRAMEWORK

In this section, we present the sleep status recognition frame-
work, which performs the signal segmentation, time-domain
and frequent-domain features extraction, and sleep status de-
tection, including on-bed movement, bed exit, and breathing
section.

A. Framework Structure

The architecture of this framework comprises signal seg-
mentation, features extraction, sleep status recognition, and a
breathing rate extraction algorithm, as shown in Fig. 5. First, the
displacement signal x(t) is framed into short segments with the
window length of 512 samples, corresponding to 5.12 seconds
with a sampling rate of 100 Hz. This segmentation setup is
empirically chosen according to the observation in the study.
In addition, it well associates the segment with body move-
ment in one period and benefits further processing. Then, the
framework extracts the features for each segment and classifies
these segments into three sleep status: on-bed movement event,
bed-exit event, or breathing section. Simultaneously, breathing
rate is obtained by using the novel breathing rate extraction
algorithm.

B. Features Extraction

The sleep status is characterized with time-domain and
frequency-domain features. For instance, the breathing section
has a subtle fluctuation in the displacement signal x(t) in terms
of amplitude and frequency, while the on-bed movement event

Fig. 5. The flow chart of sleep status recognition framework, consisting of
segmentation, sleep status detection, and sleep status recognition.

and bed exit event have relatively larger changes. To repre-
sent these three different sleep statuses, we, therefore, extract
five features including two statistical features, two frequency-
domain features, and a non-linear time-series feature, i.e.,
root mean square (RMS), mean crossing rate (MCR), energy,
mel-frequency cepstral coefficients-based coefficients (MFCC-
based coefficients), and sample entropy, which are shown in
Table I. Note that the values for the aforementioned features are
obtained from each 512 samples of non-overlapping windows.

RMS is a parameter that implies the size of signal amplitude,
namely, the strength of the subject’s movement in our case,
which is defined in (11)

RMS =

Ns∑
i=0

√
A(i)2

Ns
(11)

where A(i) is the amplitude of the demodulated signal x(t). Ns

is the sample number. Consequently, if the amplitude of x(t)
has large variability, the RMS value varies correspondingly,
indicating an existence of dramatic sleep movement.

MCR is defined as the rate when the demodulated signal
x(t) passes across the mean value over the total samples. To
be specific, it counts the occurrence times (OT) of x(t) that go
above or below the mean value, as defined in (12)

OT =

Ns−1∑
k=1

1A ((xk − x̄)(xk+1 − x̄) < 0) (12)

where x̄ is the mean value of total Ns samples, and 1A(·) is
the indicator function. Then, the MCR can be calculated by
using (13)

MCR =
1

Ns − 1

Ns−1∑
k=1

1A ((xk − x̄)(xk+1 − x̄) < 0) . (13)
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TABLE I
THE LIST OF SELECTED FEATURES

Fig. 6. The procedures for the MFCC-based feature extraction, which are
Hamming filtering, DFT, scaling, and DCT.

In our case, the on-bed movement and bed exit movement
will produce dramatic fluctuation in terms of frequency. There-
fore, the MCR values are various for these three sleep statuses.

Energy is a common frequency domain feature in the signal
process. We also extract the energy distribution of each seg-
ment. A segment of the demodulated signal has 512 samples,
forming the sequence

x1, x2, . . . , xn, . . . , xNs
(14)

where Ns = 512. Then, the energy can be acquired by taking
the finite Fourier transforms of this sequence as defined in (15)

E =

Ns−1∑
n=0

∣∣∣x(n)e−j2πkn/Ns

∣∣∣2 . (15)

Obviously, the status of movements, such as bed exit movement
and on-bed movement, has larger energy than the breathing
section.

Another commonly used frequency-domain feature for
analysis is MFCC, especially in the audio signal processing
area. The study [41], [42] has proved that MFCC features are
effective to represent the Doppler signatures and employs the
MFCC coefficients to recognize various human activities. Like-
wise, we also compute MFCC features for each segment. Fig. 6
illustrates steps to extract the MFCC-based coefficients. It
employs a Hamming window to process the segmented dis-
placement signal x(n)

x̃(n) = x(n)×W (n) (16)

where x(n) is the displacement signal. W (n) is the n sample
long Hamming window. Followed by performing the discrete
Fourier transform (DFT), as shown in (17), which is applied to
each frame to obtain the energy distribution in the frequency-
domain

X(k) =

N−1∑
n=0

x̃(n) exp

(
−j2πk

N

)
, 0 ≤ k ≤ N − 1 (17)

where x̃(n) is the displacement signal after the Hamming
window and n denote number of samples. N is the length of
DFT. However, unlike the traditional MFCC technology which
uses a Mel-filter banks to block a certain frequency range in the

audio signal, in our case, we do not implement the Mel-filter
banks because the frequency features of on-bed movement, bed
exit, and breathing section are all in the frequency domain.
Therefore, we must keep all the frequency features in all
frequency domains, and no filter is needed. We then scale the
data with log function, as shown in (18), in each frame to get
the log energies

s(k) = ln
(
|Xi(k)|2

)
, 0 ≤ k ≤ N − 1. (18)

We employ (19) to perform discrete cosine transform (DCT) to
obtain the corresponding cepstral coefficients of each frame

C(m) = w(m)
k=N∑
k=0

s(k) cos
π(2k − 1)(m− 1)

2N
, 1 ≤ m ≤ N

(19)

where w(m) is

w(m) =

⎧⎨⎩
1√
N

m = 1√
2
N 2 ≤ m ≤ N.

Finally, we extract the sample entropy for each frame because
the sample entropy provides an enhanced method to measure
the complexity and regularity of the signal, which can be
derived by (20)

SampleEn(m, r,N) = −ln

(
φ

′m(r)

φ′m+1(r)

)
(20)

where

φ
′m(r) = (N −m+ 1)−1

N−m+1∑
i=1

C
′m
i (r). (21)

The m is the embedding dimension. r is the tolerance. The
number of data points is N . In our case, the displacement
signal from the breathing section has more regularity and
less complexity than the displacement signal from the on-bed
movement and bed exit status, thus having the distinguished
sample entropy value.

C. Breathing Rate Estimation

In this section, we present the breathing rate calculation
algorithm using an adaptive-threshold based peak detection
method. Because the demodulated breathing displacement sig-
nal is similar to the trigonometric signal, as shown in Fig. 10.
A pair of peak and valley corresponds to a breathing section.
Therefore, the extraction of the breathing rate is to count the
number of pairs of peaks and valleys in the displacement
signal. Traditionally, this aim can be achieved by employing
a general peak detection method with the fixed threshold. The
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Fig. 7. A peak detection with adaptive threshold example. In region A and
region C, the breathing number is not consistent, implying sensitivity to random
noise. However, the breathing number that corresponds with the most flat area,
Region B, is desired.

threshold is defined as the value difference between the peak
(or valley) and its neighboring values. However, during sleep
the breathing signals from different subjects usually vary in
magnitude and frequency, even the same subject has various
breathing patterns. Using the traditional threshold-fixed method
will result in inaccurate peak detection, leading to a poor
breathing rate calculation. Other methods based on Fourier
transform [43], [44] can be employed to perform the breathing
rate calculation. Our method is robust in suppressing noise and
easy to implement without complex calculations for portable
applications. Therefore, we utilize a peak detection algorithm
with an adaptive threshold to resolve this issue.

When a segment of displacement signal x(n) arrives, the
proposed breathing rate extraction algorithm obtains the re-
lationship between the breathing number and the threshold
value. Specifically, the algorithm goes through all the threshold
values from 0 to the maximal magnitude difference. For each
threshold value, the corresponding number of peaks (or valleys)
is detected, we depict this relationship in Fig. 7. The threshold
index in x-axis represents the different threshold values that
are used for peak detection. The breathing number in y-axis is
the detected breathing number that corresponds with a certain
threshold value. In Region A and Region C, the breathing num-
ber varies largely for these threshold indexes. It means that the
detected breathing number experiences a large variability when
the threshold value changes with a small value, representing the
sensitivity to random noise and false peak detections. However,
in the most flat Region B, the breathing number stay unchanged
when the threshold increases, which implies that most of the
random noise is ignored and only the true peaks are countered.
Therefore, the breathing number that corresponds with the most
flat area is obtained. The breathing rate extraction algorithm is
explained in detail in Algorithm 1.

Algorithm 1 Peak detection algorithm with adaptive threshold

Input: Demodulated signal x(t)
Output: Numbers of detected breaths

1: Obtain the max and min of input signals
2: delta = max−min
3: lookForMax = true
4: for thresh = 0 to delta do
5: for all points of input signal do

Fig. 8. The experimental setup: the subject lies his back on a mattress, and the
radar locates on the top of chest of the subject with the distance of 1 meter.
Meanwhile, an airflow sensor and an accelerometer sensor are attached to serve
as the ground truth signal.

6: if dataV alue < currentMin then
7: Update currentMin
8: if dataV alue > currentMax then
9: Update currentMax

10: if lookForMax == true and dataV alue <
(currentMax − thresh) then

11: Record the peak
12: Update currentMax
13: lookForMax = false
14: if lookForMax == false and dataV alue >

(currentMin+ thresh) then
15: Record the valley
16: Update currentMin
17: lookForMax = true
18: Find the most flat region and obtain the breathing numbers

V. EXPERIMENTS AND RESULTS

In this section, we conduct several experiments to evaluate
SleepSense. First, the experiment setup is presented, followed
by verification of the sampled signal from SleepSense using the
ground truth signal from the accelerometer sensor and airflow
sensor. Then, we perform a short-term study for qualitatively
evaluation of the performance of SleepSense. Finally, we per-
form a 75-minute sleep study, which focus on the real-case
usability evaluation.

A. Experimental Setup

The experimental setup is illustrated in Fig. 8. The Doppler
radar sensor is located on the top of the subject with a distance
of one meter. An NI DAQ device (NI USB-6008) samples the
baseband signal at 100 Hz, in the meantime, it synchronizes the
radar signal and the reference signal. Simultaneously, an airflow
sensor and an accelerometer provide the ground truth for the
breathing and movement signal. Weka 3 [45] is used to imple-
ment the decision-tree based classifier, in which the thresholds
for each feature are determined by Weka 3 adaptively.

B. Breathing and Movement Signal Verification

The aim of this section is to verify the sampled sleep status
signal from SleepSense. In order to accomplish this goal, we
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Fig. 9. When a movement occurs, there is a large-magnitude and fast-
frequency fluctuation in the demodulated signal. The x-axis, or y-axis, or z-axis
value of the accelerometer changes correspondingly.

Fig. 10. The top sub-picture is the breathing signal from the SleepSense
system; the bottom sub-picture is the ground truth provided by the airflow
sensor. They are matched.

employ an accelerometer and an airflow sensor to serve as the
ground truth signal. Specifically, the accelerometer, which is
attached to the subject’s chest as shown in Fig. 8, can detect
subject movement accurately because its X-axis, Y -axis, and
Z-axis values experience changing levels when a movement
occurs. The airflow sensor, which is attached in the nostril area
as shown in Fig. 8, captures the breathing signal because it is a
thermistor-based airflow sensor and the temperature around the
nostril area changes when the subject inhales and exhales.

First, we aim to validate the sampled movement signal. Fig. 9
demonstrates the relationship between the demodulated signal
from SleepSense and the signal from the accelerometer sensor.
We notice that there is a large-magnitude and fast-frequency
fluctuation in the demodulated signal, which indicates a move-
ment. Correspondingly, it has obvious value changes in three
axes of the accelerometer. Therefore, it has been proven that
the sampled movement signal is the actual movement signal.

Then, we verify the acquired breathing signal from
SleepSense via an airflow sensor. Fig. 10 illustrates the rela-
tionship between the breathing signal and ground truth signal.
The demodulated radar signal are matched with the reference
signal, which stems from the airflow sensor. A breathing section
consists of an inhalation, a valley in the demodulated signal,
and an exhalation, a peak in the demodulated signal. One
breathing section corresponds with a peak in the reference
signal, as shown in Fig. 10. Therefore, the breathing signal from
SleepSense can be validated by the ground truth signal.

TABLE II
CONFUSION MATRIX OF SHORT TERM STUDY

C. System Performance Evaluation

We perform the short-term controlled study to qualitatively
examine the performance of the SleepSense system. Specif-
ically, the sleep status recognition framework is evaluated,
followed by the evaluation on the breathing rate extraction
algorithm.

1) Data Collection: The data collection in this section fol-
lows the experimental configuration in Section V-A. Three
subjects participated in the short-term controlled study. Their
ages were 25 to 28 years, height 180 to 185 cm, weight 80 kg
to 100 kg. Each subject performed four sets of on-bed move-
ment tests and 10 sets of bed-exit tests. In each on-bed move-
ment test, the subject laid on his back and remained still on
the mattress. After 25 seconds, the subject turned over and
remained still for the next 25 seconds. Finally, the subject
changed back to lie on his back on the mattress. Each subject
repeated the aforementioned steps three times in one test, which
took roughly 3 to 4 minutes. In total, we acquired 12 groups of
on-bed movement and 40 groups of bed exit.

2) Sleep Event Detection Accuracy: The SleepSense system
processes the acquired data from the aforementioned sets of
tests with the framework in Section IV. The classification
results are based on the each epoch of 5.12 seconds, and the
ground truth signals are from the accelerometer and air flows.
The status detection confusion table is shown in Table II, where
the left column represents the actual activities and the top
row represents the predicted activities. We define the overall
accuracy (ACC) to be the probability that all the events are
recognized correctly, as shown in (22)

ACC =
TP + TN

P + N
(22)

where TP is true positive, TN is true negative, P is positive,
and N is negative. The results show that the overall accu-
racy is 95.1%. In the case of on-bed movement recognition,
the SleepSense system successfully distinguishes 93 segments
from the total 108 segments labeled with on-bed movement.
In terms of bed exit recognition, it recognizes 21 segments
from the total 30 segments labeled bed exit. In the case of
breathing section detection, SleepSense identifies 405 segments
from the total 408 segments, which shows a high probability
of correct recognition of the breathing section. No breathing
section is recognized as the bed exit. It is the same for bed-
exit recognition. This is because the features from the bed exit
and breathing section vary dramatically in terms of time domain
or frequency domain. However, the classification result for bed
exit and on-bed movement events is inferior because some
of the on-bed movements and bed-exit movements share the
same features such as frequency and amplitude in movements.
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Fig. 11. The novel breathing rate extraction method using a novel peak detec-
tion algorithm with adaptive threshold. (a) Relationship between the detected
breathing numbers and threshold values. (b) Detect peaks using a specific
threshold value.

There are also some errors for on-bed movement and breathing
section recognition, which is caused by the windowing issue.
Specifically, because we employ the fixed length window in
the segmentation, a movement may be incorrectly divided
into several windows and lose the on-bed movement features,
leading to misclassification. To improve the recognition of bed
exit/entrance, we can consider other sensing modalities, such as
adding another radar/infrared sensor to detect occupancy [46].

3) Breathing Rate Extraction: We verify the proposed
breathing rate extraction algorithm by employing it on a short
breathing signal, which is described in Fig. 11(b). The short
breathing signal holds 60 s long, which is an excerpt from a
normal breathing signal longer than 60 s. From the demodulated
signal, we can observe that the breathing number is 21 during
the 60 seconds. By applying the peak detection algorithm with
adaptive threshold, we can obtain the relationship between
breathing numbers and threshold index as shown in the top
of Fig. 11(a). According to the algorithm, we look for the
most flat region on the signal, which is zoomed in the upper
part. The most flat region is circled by the red rectangle and
the corresponding breathing number is 21. The breathing rate
algorithm employs different threshold values to calculate the
number of peaks. Therefore, this algorithm can detect different
values of peaks based on different threshold values. The red
dots, as shown in the bottom of Fig. 11(b), are a group of
detected peaks based on specific threshold values. Note that,
the red dots are not located at the top of breathing peaks, this
is because we use different thresholds (the threshold typically
goes from 0 to the maximal magnitude with a proper step) to
detect the peaks. In some cases when using certain thresholds,
the detected peaks are not located at the top of the waveform,
but the number of detected peaks is right. In our algorithm, we
obtain the relationship between threshold and detected peaks to
determine the correct peak number.

D. A 75-Minute Sleep Monitoring Case Study

We also perform a 75-minute sleep monitoring study, which
evaluates the wide usability of SleepSense in a real-case study.

The data are collected during a nap of one subject. Similarly,
we deploy an airflow sensor and acceleration sensor on the sub-

Fig. 12. (a) Demodulated signal (75 minutes) from the SleepSense system.
(b) Ground truth provided by accelerometer. (c) Breathing rate for this
75-minute nap.

TABLE III
CONFUSION MATRIX OF THE 75-MINUTE SLEEP MONITORING STUDY

ject to establish the ground truth for breathing and movement
signal. The displacement signal is shown in Fig. 12(a). The
sleep status recognition framework frames the 75-minute signal
into small segments. The ground truth in Fig. 12(b) shows that
it has a total of 4 on-bed movements and one bed exit. Others
are the breathing sections. Because the duration of the on-bed
movement exceeds the frame length, which is 5.12 seconds,
two consecutive frames thus, contain one movement signal.
Therefore, there are total 8 frames that represent the on-bed
movement event. The total number of sleep status frames is 878.
Only one frame is the bed-exit event, and the rest of the 869
frames are breathing sections. Finally, the trained sleep status
detector in Section V-C processes all of these frames. These
segments will be classified into three sleep statuses: on-bed
movement, bed exit, or breathing section.

The confusion matrix of the 75-minute sleep monitoring
study is shown in Table III, where we focus on the evaluation
of on-bed movement and breathing section detection where
there is only one bed exit that is correctly recognized. In this
test, SleepSense distinguishes all the breathing sections, which
shows high accuracy. We note that the recognition rate for on-
bed movement event detection is relatively lower because of the
two misclassified on-bed movement statuses. The misclassifi-
cation cases may be caused by the aforementioned windowing
issue. The overall accuracy in this study is 99.9%, though the
result is unbalanced because most of the segments are breathing
sections.
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Moreover, we calculate the breathing rate by averaging the
breathing counts in the previous 20 windows, which is based
on our trial and 20 gives the most accurate breathing rate.
Fig. 12(c) demonstrates the overall breathing rate for this short
period of sleep. Specifically, the red curve is the estimated result
by using the SleepSense system. The black curve is the ground
truth signal. These two curves are matched similarly. Both are
about 18 BPM (Breath per Minute). We can observe that the
breathing rate varies during sleep in Fig. 12(c). When the sub-
ject is going to fall asleep, the breathing rate is more irregular,
which changes between 20 BPM and 10 BPM in region A.
However, the breathing rate becomes stable when the subject
falls asleep. At the end of sleep, the breathing rate experiences
another level of change. An interesting phenomenon happens
when the subject changes sleep position, which is associated
with reduced breathing rates. This is because in the middle of
the gross body movement, breathing activity is overwhelmed
in body movement signals. Advanced signal processing will
be considered to extract breathing signals in future work. In
Fig. 12(a) of the 75-minute nap study, when gross body move-
ments happen, the displacement signal shows instantaneous
peaks in the time stamps of 1200, 2850, 3700, and 4250, which
are totally different from the signal in breathing status as shown
in the zoom in area of Fig. 12(a). This phenomenon indicates
that the signal of breathing activities is overwhelmed by the
signal of body movements. In this case, the breathing rate value
during gross body movement is assigned with the last valid
value of the breathing rate.

The mean of the breathing rate absolute error is 1.89 per
minute, and the standard deviation is 1.47. The absolute error
is defined as the absolute value of the difference between the
measured result and the reference. Furthermore, we quantify
the error rate (ER) between the SleepSense-measured result and
the ground truth signal by using the area under the curve (AUC)
method as shown in (23)

ER =
|AUC(SleepSense)− AUC(GT)|

AUC(GT)
(23)

where GT represents ground truth. We define the overall
error rate as the ratio of the total area difference between
the SleepSense-measured result and ground truth to the total
ground truth area. The overall error rate is only 6.65%, which
is the gray area in Fig. 12(c).

The error is caused by two factors: the on-bed movement
and side sleep position. Fig. 12(c) shows a rising error rate
(grey area) near the location where the subject changes to
a different sleep position. This is because when an on-bed
movement occurs, it is difficult for SleepSense to extract the
breathing rate from that frame. However, the SleepSense will
use the breathing number in the preceding frame that has no on-
bed movement signal instead, causing the increased error rate.
Another factor is the sleep position as seen from Fig. 12(c). The
subject changes the sleep position from supine to side sleep
and side sleep to supine four times during the nap. The error
rate varies for different sleep positions. Specifically, the error
rate is considerably lower when the subject is in the supine
position. When the subject changes the sleep position to the

side, the chest displacement is less significant, and the breathing
signal becomes relatively weak for the subject who is in side
sleep position. The performance of the breathing rate extraction
algorithm diminishes correspondingly.

VI. DISCUSSION

A. Parameters Selection

The experimental setup is based on our empirical observa-
tions in our preliminary set study. In our experimental test,
a gross body movement takes approximately 5 s from the
beginning to the end although we admit that this setup might
be different according to the subject. Note that our framework
is not tailored toward this setup and can be adjusted based on
need. For example, it can be 6 s or 7 s setting if proper. In
addition, for the simplicity of FFT transformation, we chose
512 samples in the study. As a result, we chose the segment
length as 5.12 s. The aforementioned features are obtained from
this 5.12 s segment. Note that 30 s is standard for sleep analysis
where ground truth is obtained based on that, although this
study did not use 30 s episode, this window length will be
used in the future work when considering sleep stage analysis.
In short-term controlled study, 25 s is only for emulating the
still status between each body movement activities under the
experimental protocols. The choice of 60 s episode of breathing
signal is based on the work of Chazal et al. [47] that 60 s is
proper for obstructive sleep apnea events detection. The episode
length can also be conveniently changed to 30 s to follow the
standard in sleep analysis.

B. Impact of Distance

In this section we discuss the impact of distance on the ac-
curacy of the breathing rate extraction algorithm. The distance
is defined as the length between the subject and antenna of
Doppler radar sensor. Theoretically, the effective distance for
our Doppler radar sensor is 1.5 meters based on its transmitter
power. The power level of it is almost a thousand times less
than the peak power of an ordinary global system for mobile
communications (GSM) cellphone so it is safe for human-
related applications. In our experiment, the distance is 1 meter.
Based on our observation, the amplitude of the baseband radar
I/Q signal is proportional to the distance between the subject
and Doppler radar sensor. When the subject is far away from
the Doppler radar sensor, the amplitude becomes diminished
because it is difficult for the Doppler radar sensor to capture the
chest wall displacement caused by breathing. The side sleep
position experiences the same situation, which is discussed in
the proceeding section. The downside of a smaller amplitude
for the baseband radar signal is that it is more sensitive to inter-
ference from background noises, such as DC offsets and white
noise caused by the Doppler radar sensor circuit. Therefore, we
chose the distance of 1 meter as the suitable distance for our
experiment.

In our study, we divide the sleep-related movement into two
classifications: on-bed movement and bed exit. For the on-
bed movement, we refer to it as the major on-bed movement,



LIN et al.: SLEEPSENSE: A NONCONTACT AND COST-EFFECTIVE SLEEP MONITORING SYSTEM 199

whose amplitude is large, such as turn over. However, during
sleep some micro on-bed movements such as arm trembling,
leg jerk, and head movements occur. Because the Doppler
radar sensor is located in the front of the subject’s chest, it
is difficult for the Doppler radar sensor to capture these leg
jerk and head movements. Even though the radar can capture
these signals, compared with these major on-bed movements,
the time-domain and frequent-domain features of micro on-bed
movement are not distinguished, which will be misclassified as
the breathing section. However, these slight on-bed movements
happen in the sleep [48], where rate of movement is lowest [31].
Therefore, micro-movement detection has limited impact on the
performance of SleepSense.

C. Selected Features Discussion

Four scatter plots are shown in Fig. 13(a)–(d), respectively,
to demonstrate the performance of the selected features, which
are RMS, MCR, energy, MFCC-based coefficients, and sample
entropy. Fig. 13(a) shows the feature of sample entropy versus
mean of the first ten MFCC based coefficients. The samples
of three status features located in three separate areas because
MFCC-based coefficients discriminate the three statuses in
the three ranges of y-axis values. Specifically, most breathing
sections scatters in the range from −10 to 0 on the y axis. The
bed exit and on-bed movement statuses, on the other hand, are
located in the range from 10 to 20 and 0 to 10, respectively.
Fig. 13(b) shows that the bed exit has the largest energy and
breathing section has the least energy, because the frequency
and displacement of the bed exit is much larger than that of
breathing section and on-bed movement. Another feature RSM,
which implies the signal amplitude, is much higher for bed
exit than that of breathing section and on-bed movement, as
shown in Fig. 13(c). In Fig. 13(d), because the demodulated
signal in breathing section is a periodical signal, and it has the
highest MCR among these three status. The bed exit move-
ment, however, has the lowest MCR, because it is a one-time
displacement.

D. Differences Between This and Related Work

Rahman et al. [49] use a Doppler radar to track sleep related
variables including body movement and heart movement. By
incorporating these variables, it can infer sleep versus wake
classification and sleep stages classification. Compare to the
work of Rahman et al., our work focuses on activities classi-
fication including on-bed movement, bed-exit, and breathing.
By extracting useful features, we have achieved higher recall
rate and precision rate, as shown in Tables II and III, than
those in the work of Rahman et al. Furthermore, we have
elaborated the radar signal demodulation in our work which
adopts a nonlinear demodulation. The nonlinear demodulation
method enables more accurate respiration waveform extraction
than the traditional linear demodulation. Our work is among
the first studies reported with nonlinear demodulation. While in
the work of Rahman et al., the signal demodulation method is
described briefly without details.

Fig. 13. The scatter plots for the entropy, MFCC-based coefficients, RMS, and
MCR features distribution. (a) Entropy versus mean of first 10 MFCC-based
coefficients. (b) Entropy versus energy. (c) RMS versus mean of first 10 MFCC-
based coefficients. (d) Entropy versus MCR.

E. Body Movements During Sleep

In the short-term controlled study, we emulated the activities
during sleep including turned over, remained still, and changed
lying posture to show the feasibility and accuracy of our pro-
posed system. The subject was awake in that study. However,
the subject in the 75-minute nap study is actually in sleep, and
the body movement is truly happened and in random pattern.
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F. Incorporates With Other Non-Invasive Techniques

Though SleepSense is limited in its ability to detect micro
on-bed movements, it can achieve higher performance by in-
corporating other non-invasive techniques such as actigraphy.
Specifically, by placing an accelerometer sensor near the sub-
ject, we can obtain the location of micro on-bed movement
which the SleepSense ordinarily cannot detect. These locations
of micro on-bed movements are useful to recognize the deep
sleep stage. Moreover, we can combine sub-sampled sound/
vibrations with SleepSense to capture the sleep-related acoustic
events. Similar to audio signals, sub-sampled sound/vibrations
can still be captured with a cost-effective microphone, but
sensitive audio information, such as speech, will not be in-
cluded. Some recent studies, such as [17], [50], also share
this similar insight. We can also combine a pressure-sensitive
bed sheet [51], [52] to capture the sleep-related movement and
posture events such as leg movement, body movement, and
posture and body orientation. This movement and posture in-
formation are distributed in different sleep stages. By acquiring
this information, we can perform the sleep stage classification
precisely.

G. Capability of Sleep Stage Classification

In this study, we focus on monitoring sleep and extracting
meaningful sleep information. The acquired the breathing pat-
tern and movement distribution pattern are particularly useful
to infer the different sleep stage [30], [31], even assess the sleep
quality further [53]. The sleep research community generally
divides the sleep into two categories: non-rapid eye movement
(Non-REM) sleep stage and rapid eye movement (REM) sleep
stage. The Non-REM sleep stage can be further classified into
light sleep stage and deep sleep stage. The light sleep stage
is transition from being awake to falling sleep, in which the
body disengages from the surrounding and become relax for
the arrival of deep sleep stage, thus results in frequent on-bed
movements. When it comes to deep sleep stage, the body is
totally relaxed for tissue repair and energy resort. Therefore,
the frequency of on-bed movement is lowest and the breathing
pattern is stable. In the REM Stage, where body is paralyzed
because of the muscle immobility, only few on-bed movements
occur occasionally. The breathing pattern, however, is irregular
as the brain is active and dream occurs [54]. In summary, first,
in terms of movement distribution, the rate of movement is
lowest during deep sleep stage [31], REM sleep stage has fewer
movements than light sleep stage because of the body paralysis
[55], and light sleep stage is characterized with the frequent
movements. Second, breathing patterns vary when it comes to
the REM sleep stage since the REM stage is characterized with
irregular breathing patterns [48], whereas the breathing patterns
of Non-REM sleep stage are relatively stable. Therefore, our
system is able to provide some information to perform the
sleep classification, thus determine the sleep quality. Moreover,
by incorporating our system with other non-invasive methods,
SleepSense will be able to capture small body movements and
provide fine-grained sleep quality assessments, which will be
included in the future study.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a non-contact and cost-effective
sleep monitoring system, SleepSense, based on the Doppler
radar sensor, which can discriminate various sleep status stages
and extract the breathing rate accurately. In the implementation
of SleepSense, we extract several time-domain and frequency-
domain features and employ the decision-tree based classifier
to recognize different sleep status, including breathing section,
bed exit, and on-bed movement. The breathing rate, then, is
calculated using a novel breathing rate extraction algorithm. We
also empirically demonstrate the effectiveness of SleepSense
in the short-term controlled study and the 75-minute real case
study. The SleepSense can identify the on-bed movement, bed
exit, breathing section, and extract the breathing rate with an
acceptable accuracy rate and wide useability. We also perform
the sleep stage classification based on the acquired information
from SleepSense. By deploying the proposed sleep monitoring
system at home, it can help people to assess sleep quality, even
diagnose the sleep disorders at the earliest stages.

In the future, the system will be further enhanced in six
aspects. First, the sleep onset detection will be included in the
system. Second, the evaluation will include subject moving to
sit up from lying down in bed to ensure this would not be falsely
scored as bed exit. Third, we will comprehensively evaluate the
overnight recording performance including the events detection
accuracy and breathing rate accuracy with clinical instruments,
such as PSG, adopted as the ground truth. Fourth, we will in-
corporate the other unobstructed monitoring methods to reduce
the misclassification cases. Fifth, we will validate performance
on recordings not used for development. Lastly, we will en-
hance the performance of SleepSense by implementing a radar
demodulation method on the FPGA platforms, which is more
efficient and can achieve the real-time demodulation for the
baseband signal. Based on the acquired sleep pattern which
includes breathing and movement distribution patterns, we will
build SleepSense as a personalized sleep monitoring system.
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